Rapid Mixing via Coupling Independence for Spin Sustems with Unbounded Degree

Xiaoyu Chen

🚺 Nanjing University

based on joint work with

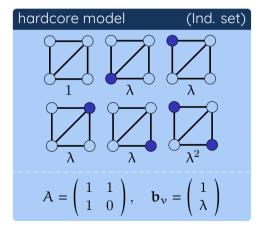
Weiming Feng The University of Hong Kong

Sampling from spin systems

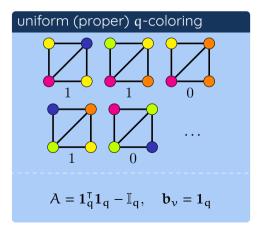
q-spin systems

Fix $q \ge 2$. Let G = (V, E) be a graph and

- ▶ let $A \in \mathbb{R}_{\geq 0}^{q \times q}$ be the interaction matrix
- $\forall v \in V$, let $\mathbf{b}_v \in \mathbb{R}^q_{\geq 0}$ be external fields



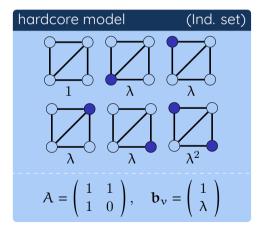
Gibbs distribution μ : $\forall \sigma \in [q]^V$, $\mu(\sigma) \propto \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v) \prod_{v \in V} b_v(\sigma_v)$



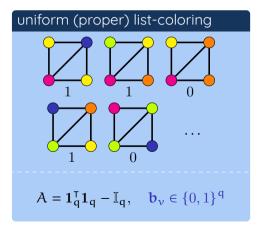
q-spin systems

Fix $q \ge 2$. Let G = (V, E) be a graph and

- ▶ let $A \in \mathbb{R}_{\geq 0}^{q \times q}$ be the interaction matrix
- $\forall v \in V$, let $\mathbf{b}_v \in \mathbb{R}^q_{\geq 0}$ be external fields



Gibbs distribution μ : $\forall \sigma \in [q]^V$, $\mu(\sigma) \propto \prod_{e=\{u,v\} \in E} A(\sigma_u, \sigma_v) \prod_{v \in V} b_v(\sigma_v)$



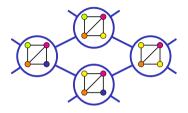
MCMC method

Glauber dynamics is the **standard** algorithm to sample from Gibbs distributions

it updates the current state X as

- 1. pick a vertex $\mathfrak u$ uniformly at random
- 2. resample X_u from $\mu_u(\cdot \mid X_{V \setminus u})$

$$X_0 \to X_1 \to X_2 \to X_3 \to \cdots \to X_t$$



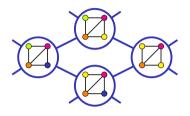
MCMC method

Glauber dynamics is the **standard** algorithm to sample from Gibbs distributions

it updates the current state X as

- 1. pick a vertex $\mathfrak u$ uniformly at random
- 2. let $X_{\mathfrak{u}}$ be a new random color that does not appear in \mathfrak{u} 's neighbors

$$X_0 \to X_1 \to X_2 \to X_3 \to \cdots \to X_t$$



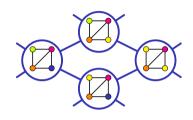
MCMC method

Glauber dynamics is the **standard** algorithm to sample from Gibbs distributions

it updates the current state X as

- 1. pick a vertex u uniformly at random
- 2. let $X_{\mathfrak{u}}$ be a new random color that does not appear in \mathfrak{u} 's neighbors

$$X_0 \to X_1 \to X_2 \to X_3 \to \cdots \to X_t$$



MCMC method: run GD. for t steps (with sufficiently large t); then output X_t

- ▶ Convergence: $X_t \sim \mu$ as $t \to \infty$
- ▶ Mixing time: $T_{mix}(\mu) := \max_{S_0} \min \{t \mid d_{TV}(X_t, \mu) \leq 1/4\}$
- ► TV-distance: $d_{\mathrm{TV}}(X_t, \mu) := \sum_{s} |\mathbf{Pr}[X_t = s] \mu(s)|$
- ▶ **Relaxation time**: $T_{rel}(\mu) := \frac{1}{1-\lambda_2}$ λ_2 : the 2nd largest eigenvalue of GD.

$$T_{\text{mix}}(\mu) \leqslant T_{\text{rel}}(\mu) \log \frac{4}{\min_{\sigma} \mu(\sigma)}$$

spectral independence ⇒ rapid mixing [ALO20, CLV20, CGŠV21, FGYZ21]:

▶ influence matrix $\Psi(\mu) \in \mathbb{R}^{qn \times qn}$: let $X \sim \mu$,

$$\Psi(\mu)_{i\alpha,jb} := \begin{cases} \mathbf{Pr} \left[X_j = b \mid X_i = \alpha \right] - \mathbf{Pr} \left[X_j = b \right], & \mathbf{Pr} \left[X_i = \alpha \right] > 0 \\ 0, & \mathbf{Pr} \left[X_i = \alpha \right] = 0 \end{cases}$$

- SI(μ) = $\max_{\tau} \lambda_{\max}(\Psi(\mu^{\tau}))$, where the maximum enumerates all feasible partial configurations τ .
- consequence: $T_{mix}(\mu) \approx T_{rel}(\mu) = \pi^{O(Sl(\mu))}$.

for many important spin systems, SI is proven to be a universal constant

- ► anti-ferro, two-spin systems in uniqueness regime [ALO20, CLV20]
- ▶ proper q-coloring on triangle-free graph with q $\geq 1.763\Delta$ [CGŠV21, FGYZ21]
- even-subgraph model with penalty $\eta > 0$ [CZ23]
- ▶ bipartite hardcore model with "one-sided" uniqueness [CLY23]
- **>** ...

SI
$$\Rightarrow$$
 optimal mixing (assuming bounded max degree Δ) [CLV21]
$$T_{mix}(\mu) = \Delta^{\Delta O(SI(\mu))} n \log n$$

$$T_{rel}(\mu) = \Delta^{O(SI(\mu))} n$$

Question: Can we get optimal bounds for arbitray graph? $T_{\text{mix}} = O(n \log n) \quad \text{and} \quad T_{\text{rel}} = O(n)$

Now, we have an affirmative answer for two-spin systems (q = 2)

improve △ to O(1) ► field dynamics [CFYZ21] ► localization scheme [CE22]

improve \triangle to O(1) [AJKPV22]

- entropic independence (EI(μ)) EI(μ) = O(1) \Rightarrow SI(μ) = O(1)
- ► EI for Ising model with $\|J\|_2 < 1$ [AJKPV22]
- ► El for general anti-ferro. 2-spin system in uniqueness regime [CE22, CFYZ22]
- •

SI
$$\Rightarrow$$
 optimal mixing (assuming bounded max degree Δ) [CLV21]
$$T_{mix}(\mu) = \Delta^{\Delta O(SI(\mu))} n \log n$$

$$T_{rel}(\mu) = \Delta^{O(SI(\mu))} n$$

Question: Can we get optimal bounds for arbitray graph? $T_{\text{mix}} = O(n \log n) \quad \text{and} \quad T_{\text{rel}} = O(n)$

Now, we have an affirmative answer for two-spin systems (q = 2)

improve Δ to $\mathrm{O}(1)$	
field dynamics	[CFYZ21]
localization scheme	[CE22]
generalization for $q>2$?

```
improve \triangle to O(1) [AJKPV22]

• entropic independence (El(\mu))

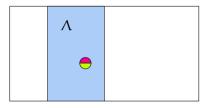
El(\mu) = O(1) \Rightarrow Sl(\mu) = O(1)

analysis El when q > 2
```

Question: Optimal T_{rel} and T_{mix} for multi-spin systems (q > 2)?

coupling independence

$$\mathsf{Cl}(\mu) := \max_{\substack{\sigma,\tau \in [\mathfrak{q}]^\Lambda, |\sigma \oplus \tau| = 1}} \, \mathcal{W}_1(\mu^\sigma, \mu^\tau)$$



W1-distance

$$\begin{split} \mathcal{W}_1(\mu^\sigma, \mu^\tau) &:= \inf_{\mathcal{C}} \mathbb{E}_{(X,Y) \sim \mathcal{C}} \left[|X \oplus Y| \right], \\ \mathcal{C} &: \text{coupling between } \mu^\sigma \text{ and } \mu^\tau \end{split}$$

 $Cl(\mu) = O(1)$ means for any two partial configurations σ, τ that only differ at one vertex, there is a coupling $\mathcal C$ between μ^σ and μ^τ such that the expected difference is at most constant

ightharpoonup $Cl(\mu) = O(1) \Rightarrow Sl(\mu) = O(1)$

[CZ23]

► CI has been used implicitly or explicitly in many previous works [Liu21, BCCPŠV21, CZ23, CG24, CLMM23, Jer24]

 μ : the uniform distribution of proper q-coloring on a graph G with maximum degree Δ

Theorem

For $\varepsilon \in (0,1)$, if $q \ge (1+\varepsilon)\Delta$, then

- there is a fast sampler for μ that runs in time $\Delta n(\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{poly(\epsilon^{-1},Cl(\mu))}n$

When the graph is triangle-free and $q/\Delta > 1.763$, then $Cl(\mu) = O(1)$ [FGYZ21]

Corollary

If G is triangle-free and $q/\Delta > 1.763$, then

- there is a fast sampler for μ that runs in time $\Delta \widetilde{O}(n)$
- we have a bound for $T_{rel}(\mu) = O(n)$

Compare to previous result for the same setting in [JPV21]:

- $T_{rel}(\mu) = n^{1+o(1)}$
- ightharpoonup \Rightarrow a sampler that runs in time $\Delta n^{2+o(1)}$

Our technique also works for two-spin systems

Lemma informal

For two-spin system, $\operatorname{Cl}(\mu) \leqslant$ total influence on a self-avoiding walk tree

 \Rightarrow CI = O(1) for hardcore / Ising model in the uniqueness regime

Recover the known results for hardcore / Ising model in the uniqueness regime

- $T_{\text{rel}}(\mu) = O(n)$
- a fast sampler for μ that runs in time $\Delta\widetilde{O}(n)$

Our technique also works for two-spin systems

Lemma informal

For two-spin system, $Cl(\mu) \le total$ influence on a self-avoiding walk tree

 \Rightarrow CI = O(1) for hardcore / Ising model in the uniqueness regime

Let $G = (V_L \uplus V_R, E)$ be a bipartite graph

- ightharpoonup let Δ_L (Δ_R resp.) denote the maximum degree for vertices in V_L (V_R resp.)
- the uniqueness threshold for the fugacity λ : $\lambda_c(\Delta) := \frac{(\Delta-1)^{(\Delta-1)}}{(\Delta-2)^{\Delta}}$

Let μ be the hardcore model with fugaicity λ on G

Theorem

For $\delta \in (0,1)$, C>0, if $\lambda \leqslant (1-\delta)\lambda_c(\Delta_L)$ and $\Delta_R=C\times \Delta_L$, then

- there is a fast sampler for μ that runs in time $\Delta \widetilde{O}(n)$
- we have a bound for $T_{rel}(\mu) = O(n)$

Proof overview

 $\mu\!\!:$ the uniform distribution of proper q-coloring on a graph G with maximum degree Δ

Theorem

For $\varepsilon \in (0,1)$, if $q \ge (1+\varepsilon)\Delta$, then

- \blacktriangleright there is a fast sampler for μ that runs in time $\Delta n (\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{\text{poly}(\epsilon^{-1}, Cl(\mu))} n$

 $\mu\!\!:$ the uniform distribution of proper list-coloring on a graph G with maximum degree Δ

Theorem

For $\varepsilon \in (0,1)$, if $\forall v$, $\|\mathbf{b}_v\|_1 \ge (1+\varepsilon)\Delta$, then

- there is a fast sampler for μ that runs in time $\Delta n(\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{poly(\epsilon^{-1},Cl(\mu))}n$

Recall: \mathbf{b}_{ν} is a 01-vector indicating the avaliable colors for vertex ν

 $\mu\!\!:$ the uniform distribution of proper list-coloring on a graph G with maximum degree Δ

Theorem

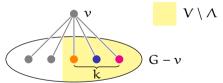
For $\varepsilon \in (0,1)$, if $\forall \nu$, $\|\mathbf{b}_{\nu}\|_{1} \ge (1+\varepsilon)\Delta$, then

- there is a fast sampler for μ that runs in time $\Delta n(\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{poly(\epsilon^{-1},Cl(\mu))}n$

Recall: \mathbf{b}_{v} is a 01-vector indicating the avaliable colors for vertex v

Observation: self-reducibility & "easier" conditional distributions

1. Let $\Lambda \subseteq V$, for $\tau \in [q]^{V \setminus \Lambda}$, μ_{Λ}^{τ} is a uniform distribution of list-coloring on $G[\Lambda]$ with new color list \mathbf{b}'_{ν} for each vertex $\nu \in \Lambda$



 μ : the uniform distribution of proper list-coloring on a graph G with maximum degree Δ

Theorem

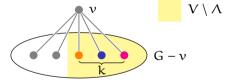
For $\varepsilon \in (0,1)$, if $\forall \nu$, $\|\mathbf{b}_{\nu}\|_{1} \ge (1+\varepsilon)\Delta$, then

- there is a fast sampler for μ that runs in time $\Delta n(\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{poly(\epsilon^{-1},Cl(\mu))}n$

Recall: \mathbf{b}_{v} is a 01-vector indicating the avaliable colors for vertex v

Observation: self-reducibility & "easier" conditional distributions

- 1. Let $\Lambda \subseteq V$, for $\tau \in [q]^{V \setminus \Lambda}$, μ_{Λ}^{τ} is a uniform distribution of list-coloring on $G[\Lambda]$ with new color list b_{ν}' , for each vertex $\nu \in \Lambda$
- 2. If $\frac{\|\mathbf{b}_{\nu}'\|_{1}}{\Delta'_{\nu}} > 5$, for all $\nu \in \Lambda$, we know $T_{\text{mix}}(\boldsymbol{\mu}_{\Lambda}^{\tau}) = O(n \log n)$ [DB97]



 μ : the uniform distribution of proper list-coloring on a graph G with maximum degree Δ

Theorem

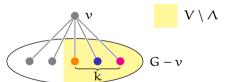
For $\varepsilon \in (0,1)$, if $\forall v, \|\mathbf{b}_v\|_1 \ge (1+\varepsilon)\Delta$, then

- there is a fast sampler for μ that runs in time $\Delta n(\log n)^{\text{poly}(\epsilon^{-1},\text{Cl}(\mu))}$
- we have a bound for $T_{rel}(\mu) = e^{poly(\epsilon^{-1},Cl(\mu))}n$

Recall: \mathbf{b}_{v} is a 01-vector indicating the avaliable colors for vertex v

Observation: self-reducibility & "easier" conditional distributions

- 1. Let $\Lambda \subseteq V$, for $\tau \in [q]^{V \setminus \Lambda}$, μ_{Λ}^{τ} is a uniform distribution of list-coloring on $G[\Lambda]$ with new color list \mathbf{b}'_{λ} , for each vertex $\nu \in \Lambda$
- 2. If $\frac{\|b_{\nu}'\|_1}{\Delta_{\nu}'} > 5$, for all $\nu \in \Lambda$, we know $T_{\text{mix}}(\mu_{\Lambda}^{\tau}) = O(n \log n)$ [DB97]
- 3. Suppose that $G[\Lambda]$ has maximum degree $\Delta' \leq \theta \Delta$ for some $\theta \in (0,1)$



$$\frac{\|b_{\nu}'\|_{1}}{\Delta_{\nu}'} \ge \frac{\|b_{\nu}\|_{1} - k}{\Delta_{\nu}' = (\Delta_{\nu} - k)}$$
$$\ge \frac{\varepsilon \Delta + (\Delta - k)}{\Delta_{\nu}' = (\Delta_{\nu} - k)} \ge 1 + \frac{\varepsilon}{\theta}$$

Reduce the sampling task to "easier" conditional distributions

for $\theta \in [0,1]$, let $EZ(\mu,\theta)$ be the family of "easier" conditional distributions of μ

$$\mathsf{E} Z(\mu,\theta) := \left\{ \mu_{\Lambda}^{\tau} \left| \begin{array}{c} \Lambda \subseteq V \text{ s.t. max degree of } G[\Lambda] \leqslant \theta \Delta \\ \tau \in [\mathfrak{q}]^{V \setminus \Lambda} \end{array} \right. \right\}$$

worst case mixing / relaxation time for "easier" conditional distributions

$$\begin{split} T_{rel}^{(\theta)}(\mu) &:= \max \left\{ T_{rel}(\nu) \mid \nu \in \mathsf{EZ}(\mu,\theta) \right\} \\ T_{mix}^{(\theta)}(\mu) &:= \max \left\{ T_{mix}(\nu) \mid \nu \in \mathsf{EZ}(\mu,\theta) \right\} \end{split}$$

Theorem

For any $\theta \in (0, \frac{1}{2Cl(\mu)})$, there exists $\Delta_0(\theta, Cl(\mu))$ such that when $\Delta \geqslant \Delta_0$, then

- $T_{\text{rel}}(\mu) = 2^{O(\text{Cl}(\mu)/\theta)} \times T_{\text{rel}}^{(\theta)}(\mu)$
- there is a fast sampler for μ that runs in time $\Delta(\log n)^{O(\text{Cl}(\mu)/\theta)} \times T_{\text{mix}}^{(\theta)}(\mu)$
- ▶ When $\Delta \leq \Delta_0$, we have $T_{\text{mix}}(\mu) = O(n \log n)$ directly from [CLV21]
- In the rest part of this talk, we will focus on the second bullet

```
k-partition
```

 $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$

For $\Lambda\subseteq [k],$ let $U_\Lambda:=\cup_{i\in\Lambda}U_i$

block dynamics for μ

- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

k-partition

 $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$

For $\Lambda \subseteq [k]$, let $U_{\Lambda} := \cup_{i \in \Lambda} U_i$

block dynamics for μ

- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

block dynamics of $\mu(\cdot \mid X_{U_i})$

- 1. select $j \in [k] \setminus \{i\}$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_{i,j}})$

. . .

k-partition $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$ For $\Lambda \subseteq [k]$, let $U_{\Lambda} := \bigcup_{i \in \Lambda} U_i$

block dynamics for μ

- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

block dynamics of $\mu(\cdot \mid X_{U_i})$

- 1. select $j \in [k] \setminus \{i\}$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_{i,j}})$

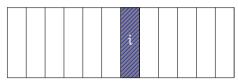
. . .

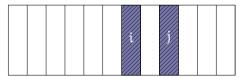
primitive

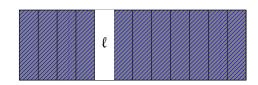
sample from $\mu(\cdot \mid X_{U_{[k]\setminus \ell}})$ \Leftrightarrow sample from $\mu_{U_{\ell}}(\cdot \mid X_{V\setminus U_{\ell}})$

 $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$

For $\Lambda \subseteq [k]$, let $U_{\Lambda} := \cup_{i \in \Lambda} U_i$







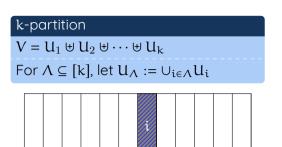
block dynamics for μ

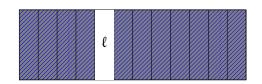
- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

In order to get a fast sampler:

- 1. block dynamics fast mixing [next slide]
- 2. implement the primitives

$\begin{array}{c} \text{primitive} \\ \text{sample from } \mu(\cdot \mid X_{U_{\lceil k \rceil \setminus \ell}}) \\ \Leftrightarrow \text{sample from } \mu_{U_\ell}(\cdot \mid X_{V \setminus U_\ell}) \end{array}$





block dynamics for μ

- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

In order to get a fast sampler:

- 1. block dynamics fast mixing [next]
- 2. implement the primitives

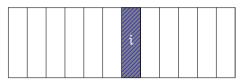
primitive

sample from $\mu(\cdot \mid X_{U_{[k]\setminus \ell}})$ sample from $\mu_{U_{\ell}}(\cdot \mid X_{V\setminus U_{\ell}})$

k-partition

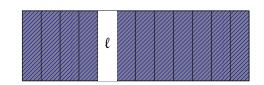
 $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$

For $\Lambda \subseteq [k]$, let $U_{\Lambda} := \bigcup_{i \in \Lambda} U_i$



By using algorithmic LLL, we can

construct a good partition s.t. $\forall X, \forall \ell, \quad \mu_{U_\ell}(\cdot \mid X_{V \setminus U_\ell}) \in \mathsf{EZ}(\mu, \theta)$



block dynamics for μ

- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

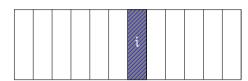
In order to get a fast sampler:

- 1. block dynamics fast mixing [next] slide
- 2. implement the primitives

intuition: distribute neighbors evenly into each partition

 $V = U_1 \uplus U_2 \uplus \cdots \uplus U_k$

For $\Lambda \subseteq [k]$, let $U_{\Lambda} := \cup_{i \in \Lambda} U_i$



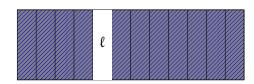
By using algorithmic LLL, we can

construct a good partition s.t.

 $\forall X, \forall \ell, \quad \mu_{U_{\ell}}(\cdot \mid X_{V \setminus U_{\ell}}) \in EZ(\mu, \theta)$

primitive

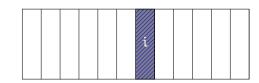
sample from $\mu(\cdot \mid X_{U_{[k]\setminus \ell}})$



Fast mixing of block dynamics

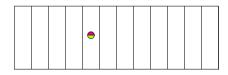
block dynamics for μ

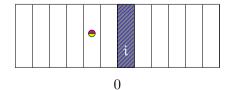
- 1. select $i \in [k]$ u.a.r.
- 2. resample $X \sim \mu(\cdot \mid X_{U_i})$

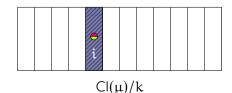


Path coupling

for $x, y \in [q]^V$ s.t. $|x \oplus y| = 1$, we have $Cl(\mu) < k \Longrightarrow W_1(\delta_x P_B, \delta_y P_B) < 1$







Thank you arxiv:2407.04672

Some interesting questions:

Compare our algorithm to Glauber dynamics?

Our algorithm ≈ censored Glauber dynamics

- ▶ monotone spin systems
- general spin systems ?

This is a new way to show $T_{mix}(\mu) = \widetilde{O}(n)$

Better CI bound for coloring?

Many previous works only show $Cl(\mu) \leq poly(\Delta)$

 $ightharpoonup Cl(\mu) = O(1)$ when $q \ge (1 + \varepsilon)\Delta$?