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Sampling from spin systems
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g-spin systems

Fix g > 2. Let G = (V, E) be a graph and Gibbs distribution w: Vo € [q]V,
qxq i i i
> let A € RJj™ be the interaction matrix u(o) o n A0y, 0v) n by(ov)
> YveV,letb, e R} be external fields e={u.v}eE vev
hardcore model (Ind. set) uniform (proper) g-coloring

71 V3 7 S Vi § VA V|
vz S vl
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3/17



g-spin systems

Fix g > 2. Let G = (V, E) be a graph and Gibbs distribution w: Vo € [q]V,
qxq i i i
> let A € RJj™ be the interaction matrix u(o) o n A0y, 0v) n by(ov)
> YveV,letb, e R} be external fields e={u.v}eE vev
hardcore model (Ind. set) uniform (proper) list-coloring

71 V3 7 S Vi § VA V|
vz S vl

11 1
A:(1 0), b\,:(}\) A=1314-14, b, € {0,1}1

3/17



MCMC method

Glauber dynamics is the standard algorithm to sample from Gibbs distributions

it updates the current state X as
1. pick a vertex u uniformly at random

2. resample Xy from pyu (- | Xvyw)

Xo= X1 =2 Xg = Xg—= - = Xt
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MCMC method

Glauber dynamics is the standard algorithm to sample from Gibbs distributions

it updates the current state X as
1. pick a vertex u uniformly at random

2. let X, be a new random color that
does not appear in w's neighbors

Xo—=> X1 > Xg > Xg— - = Xy

MCMC method: run GD. for t steps (with sufficiently large t); then output Xy
Convergence: Xy ~past — oo

> Mixing time: Trix(it) := maxs, min {t | drv (X, pn) < 1/4}

> TV-distance: drv (X¢, 1) := ) ¢ |Pr[X¢ = s] — u(s)]

> Relaxation time: T () := ﬁ Ao: the 2nd largest eigenvalue of GD.

v

Trix(1) < Tre (1) log —————
mIX(H) reI(H) Og ming H(O-)
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The bounded degree requirement
in the mixing time analysis

5/17



The bounded degree requirement in the mixing time analysis

spectral independence = rapid mixing [ALO20, CLV20, CGSV21, FGYZ21]:
> influence matrix W(u) € RA™*4™: et X ~ p,
Pr[X;=b|Xi=a|-Pr[X;=b|, Pr[X;=a]>0
Y(Wiajb =
0, Pr(Xi=a]=0
> Sl(r) = maxt Apax(W(KLY)), where the maximum enumerates all feasible
partial configurations .
> consequence: Tmix(i) = Trei(p) = nOGIW),

for many important spin systems, Sl is proven to be a universal constant

> anti-ferro. two-spin systems in uniqueness regime [ALO20, CLV20]
> proper g-coloring on triangle-free graph with q > 1.763A [CGSV21, FGYZ21]
> even-subgraph model with penaltyn > 0 [CZ23]
> bipartite hardcore model with “one-sided” uniqueness [CLY23]
>
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The bounded degree requirement in the mixing time analysis
SI = optimal mixing (assuming bounded max degree A) [CLV21]
Trix(p) = A0 IR 10gm

Trel(p) = OGIhy

Question: Can we get optimal bounds for arbitray graph?
Thix = O(nlogn) and T =0(Mn)

Now, we have an affirmative answer for two-spin systems (q = 2)

improve A to O(1) improve /' to O(1) [AJKPV22]

> field dynamics [CFYZ21] > entropic independence (EI(u))
» localization scheme [CE22] El(w) =0(1) = Sl(w) =0(1)

> El for Ising model with || ]|, < 1 [AJKPV22]

> El for general anti-ferro. 2-spin system in
uniqueness regime [CE22, CFYZ22]

> ...
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The bounded degree requirement in the mixing time analysis

SI = optimal mixing (assuming bounded max degree A) [CLV21]
Trix(p) = A0 IR 10gm

Trel(w) = Oty

Question: Can we get optimal bounds for arbitray graph?
Thix = O(nlogn) and T =0(Mn)

Now, we have an affirmative answer for two-spin systems (q = 2)

improve A to O(1) improve /' to O(1) [AJKPV22]

> field dynamics [CFYZ21] > entropic independence (EI(u))
» localization scheme [CE22] El(w) =0(1) = Sl(n)=0(1)
generalization for q > 2 ? analysis El when q > 2 ?

Question: Optimal T, and Tyix for multi-spin systems (q > 2)?
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Our results
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Our results

coupling independence

C|(u) = max Acn] Wl(}lo-, HT) Wl(uga HT) := infe E(X,Y)~G [lX @ Y|] )
o,telqlN |oal=1 C: coupling between n° and u*

A Cl(n) = O(1) means for any two partial
configurations o, T that only differ at one
vertex, there is a coupling € between pu°®
= and T such that the expected difference
is at most constant

> Cl(w) = O(1) = SI(1) = O(1) [CZ23]

> Cl has been used implicitly or explicitly in many previous works
[Liu21, BCCPSV21, CZ23, CG24, CLMM23, Jer24]
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Our results
w: the uniform distribution of proper g-coloring on a graph G with maximum degree A

For e € (0,1),if g > (1 + ¢)A, then
> there is a fast sampler for p that runs in time An(log n)Poly(e ™ .Cl()

> we have a bound for Tye() = ePolu(e™Cllm)y

When the graph is triangle-free and q/A > 1.763, then Cl(i) = O(1) [FGYZ21]

Corollary

If G is triangle-free and q/A > 1.763, then
> there is a fast sampler for u that runs in time Aﬁ(n)
» we have a bound for T (1) = O(n)
Compare to previous result for the same setting in [JPV21]:
> Trel(p) = ntte®
» = a sampler that runs in time An2+to()
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Our results
Our technique also works for two-spin systems

Lemma informall
For two-spin system, Cl(w) < total influence on a self-avoiding walk tree

= Cl = O(1) for hardcore / Ising model in the uniqueness regime

Recover the known results for hardcore / Ising model in the uniqueness regime
> Trel(n) = O(n)

> a fast sampler for p that runs in time AO(n)
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Our results
Our technique also works for two-spin systems
Lemma informall
For two-spin system, Cl(w) < total influence on a self-avoiding walk tree

= Cl = O(1) for hardcore / Ising model in the uniqueness regime

Let G = (VL W Vg, E) be a bipartite graph
> let Ar (Ag resp.) denote the maximum degree for vertices in Vi (Vg resp.)
> the uniqueness threshold for the fugacity A: Ac(A) := (A(;l_—);?:)

Let u be the hardcore model with fugaicity A on G

Foré € (0,1),C>0,if A< (1 -58)A.(Ar) and Ag = C X Ar, then
> there is a fast sampler for p that runs in time AO(n)

» we have a bound for T (1) = O(n)
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Proof overview
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w: the uniform distribution of proper g-coloring on a graph G with maximum degree A

For e € (0,1),if g > (1 + ¢)A, then
> there is a fast sampler for p that runs in time An(log n)Poly(e ™ .Cl()

> we have a bound for Tye() = ePolu(e™Clliy
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w: the uniform distribution of proper list-coloring on a graph G with maximum degree A

For e € (0,1), if Vv, ||by|[; = (1 + €)A, then
> there is a fast sampler for p that runs in time An(logn)PoY(e " ,Cl(w)
> we have a bound for Ty(g) = ePoule™ Cll)y

Recall: b, is a 01-vector indicating the avaliable colors for vertex v
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new color list by, for each vertexv e A

\A

b
2. If % > 5, forallv e A, we know
v

Trin(it) = O(nlogn) [DB97]
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w: the uniform distribution of proper list-coloring on a graph G with maximum degree A

Theorem
For e € (0,1), if Vv, ||by|[; = (1 + €)A, then

> there is a fast sampler for p that runs in time An(logn)PoY(e " ,Cl(w)
> we have a bound for Tye () = ePoe™.Cllin

Recall: b, is a 01-vector indicating the avaliable colors for vertex v

Observation: self-reducibility & “easier” conditional distributions
)

v A\
1. Let ACV, forte[q]Y\\, Y is a uniform //——\\
distribution of list-coloring on G[A] with @ G—v
k

new color list by, for each vertexv e A

\A

2. H:% > 5, forallv e A, we know ”br ” ||b ” —k
v vill vil1
Tmix(HF/r\) = O(nlogn) [DB97] A, - A, = (Ay — k)
3. Suppose that G[A] has maximum degree +(A-k)

> 1+

=z

A’ < 0A for some 0 € (0,1) A, = (A, — k)
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Reduce the sampling task to “easier” conditional distributions
for @ € [0,1], let EZ(w, 6) be the family of “easier” conditional distributions of p

A C Vst max degree of G[A] < 6A
Te [qV\

worst case mixing / relaxation time for “easier” conditional distributions

TO(1) := max {Trei(v) | v € EZ(1, 0)}

rel

Tr(rgi(u) = max { Tmix(v) | v € EZ(u, 0)}

For any 0 € (0, ﬁ(u)), there exists Ag(8, Cl(1)) such that when A > Ay, then

EZ(u,0) := {uf\

> Teei(p) = 2000070 X TO (1)

> there is a fast sampler for p that runs in time A(log n)C©(W/0) 5 T ()

> When A < Ag, we have Thix(p) = O(nlogn) directly from [CLV21]
> In the rest part of this talk, we will focus on the second bullet
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k- titi
A Russian doll approach

to sample from p V=W vl ¥ U
For A C [k], let UA := UiealUy
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A Russian doll approach

to sample from p V=W vl ¥ U

For A C [k.], let Up 1= UieaU;
block dynamics for p

1. selectie [k]u.ar 1

2. resample X ~ p(- | Xy,)
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k-partition
V=U WUy W--- Uy
For A C [k], let Up 1= UieaU;

A Russian doll approach
to sample from pu

block dynamics for p

1. selectie [k]u.ar 1

2. resample X ~ p(- | Xy,)

In order to get a fast sampler: By using algorithmic LLL, we can
1. block dynamics fast mixing [5&¢ » construct a good partition s.t.

2. implement the primitives VX,V (| Xwu,) € EZ(, 0)

sample from u(- | Xug,)
& sample from py, (- | Xviw,)
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k-partition
V=U WUy W--- Uy
For A C [k], let Up 1= UieaU;

A Russian doll approach
to sample from pu

block dynamics for p

1. selectie [k]u.ar 1

2. resample X ~ p(- | Xy,)

In order to get a fast sampler: By using algorithmic LLL, we can

1. block dynamics fast mixing [5&¢ » construct a good partition s.t.

2. implement the primitives VX,V (| Xwu,) € EZ(, 0)
intuition: distribute neighbors evenly into each partition

sample from u(- | Xug,)
& sample from py, (- | Xvyu,) 15/17




Fast mixing of block dynamics

block dynamics for n

1. selectie [k]u.ar i
2. resample X ~ u(- | Xu;)

Path coupling
for x,y € [q]V st [x®y| = 1, we have CI(n) < k = W1(8xPg, dyPg) < 1

0 Cl(w)/k
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Thank you

arXiv:2407.04672

Some interesting questions:

Compare our algorithm to Glauber dynamics?

Our algorithm = censored Glauber dynamics
> monotone spin systems

> general spin systems ?

This is a new way to show Tmix(1) = O(n)

Better Cl bound for coloring?

Many previous works only show Cl(i) < poly(A)
» Cl(w)=0(1)whenq> (1+¢e)A ?
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