
Rapid Mixing via Coupling Independence
for Spin Systems with Unbounded Degree

Xiaoyu Chen

Nanjing University

based on joint work with

Weiming Feng

The University of Hong Kong

1 / 17



Sampling from spin systems
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q-spin systems
Fix q ¾ 2. Let G = (V,E) be a graph and

É let A ∈ Rq×q
¾0 be the interaction matrix

É ∀v ∈ V , let bv ∈ Rq
¾0 be external fields

Gibbs distribution µ: ∀σ ∈ [q]V ,
µ(σ) ∝

∏
e={u,v}∈E

A(σu,σv)
∏
v∈V

bv(σv)

hardcore model (Ind. set)

1 λ λ

λ λ λ2

A =

(
1 1
1 0

)
, bv =

(
1
λ

)

uniform (proper) q-coloring

1 1 0

1 0
· · ·

A = 1ᵀq1q − Iq, bv = 1q
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MCMC method

Glauber dynamics is the standard algorithm to sample from Gibbs distributions

it updates the current state X as

1. pick a vertex u uniformly at random

2. resample Xu from µu(· | XV\u)

X0 → X1 → X2 → X3 → · · · → Xt

MCMC method: run GD. for t steps (with sufficiently large t); then output Xt

É Convergence: Xt ∼ µ as t → ∞
É Mixing time: Tmix(µ) := maxS0 min {t | dTV (Xt,µ) ¶ 1/4}
É TV-distance: dTV (Xt,µ) :=

∑
s |Pr [Xt = s] − µ(s)|

É Relaxation time: Trel(µ) := 1
1−λ2

λ2: the 2nd largest eigenvalue of GD.

Tmix(µ) ¶ Trel(µ) log 4
minσ µ(σ)
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The bounded degree requirement

in the mixing time analysis

5 / 17



The bounded degree requirement in the mixing time analysis

spectral independence ⇒ rapid mixing [ALO20, CLV20, CGŠV21, FGYZ21]:

É influence matrix Ψ(µ) ∈ Rqn×qn: let X ∼ µ,

Ψ(µ)ia,jb :=

{
Pr

[
Xj = b | Xi = a

]
− Pr

[
Xj = b

]
, Pr [Xi = a] > 0

0, Pr [Xi = a] = 0
É SI(µ) = maxτ λmax(Ψ(µτ)), where the maximum enumerates all feasible

partial configurations τ.

É consequence: Tmix(µ) ≈ Trel(µ) = nO(SI(µ)).

for many important spin systems, SI is proven to be a universal constant

É anti-ferro. two-spin systems in uniqueness regime [ALO20, CLV20]

É proper q-coloring on triangle-free graph with q ¾ 1.763∆ [CGŠV21, FGYZ21]

É even-subgraph model with penalty η > 0 [CZ23]

É bipartite hardcore model with “one-sided” uniqueness [CLY23]

É · · ·
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The bounded degree requirement in the mixing time analysis

SI ⇒ optimal mixing (assuming bounded max degree ∆) [CLV21]

Tmix(µ) = ∆∆O(SI(µ))n logn
Trel(µ) = ∆O(SI(µ))n

Question: Can we get optimal bounds for arbitray graph?

Tmix = O(n logn) and Trel = O(n)

Now, we have an affirmative answer for two-spin systems (q = 2)

improve ∆ to O(1)
É field dynamics [CFYZ21]

É localization scheme [CE22]

improve ∆ to O(1) [AJKPV22]

É entropic independence (EI(µ))
EI(µ) = O(1) ⇒ SI(µ) = O(1)

É EI for Ising model with ‖J‖2 < 1 [AJKPV22]

É EI for general anti-ferro. 2-spin system in

uniqueness regime [CE22, CFYZ22]

É · · ·
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SI ⇒ optimal mixing (assuming bounded max degree ∆) [CLV21]

Tmix(µ) = ∆∆O(SI(µ))n logn
Trel(µ) = ∆O(SI(µ))n

Question: Can we get optimal bounds for arbitray graph?

Tmix = O(n logn) and Trel = O(n)

Now, we have an affirmative answer for two-spin systems (q = 2)

improve ∆ to O(1)
É field dynamics [CFYZ21]

É localization scheme [CE22]

generalization for q > 2 ❓

improve ∆ to O(1) [AJKPV22]

É entropic independence (EI(µ))
EI(µ) = O(1) ⇒ SI(µ) = O(1)

analysis EI when q > 2 ❓

Question: Optimal Trel and Tmix for multi-spin systems (q > 2)?
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Our results
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Our results

coupling independence

CI(µ) := max Λ⊆[n]
σ,τ∈[q]Λ,|σ⊕τ|=1

W1(µσ,µτ)
W1-distance

W1(µσ,µτ) := infC E(X,Y)∼C [|X ⊕ Y|] ,
C: coupling between µσ and µτ

Λ CI(µ) = O(1) means for any two partial

configurations σ, τ that only differ at one

vertex, there is a coupling C between µσ

and µτ such that the expected difference

is at most constant

É CI(µ) = O(1) ⇒ SI(µ) = O(1) [CZ23]

É CI has been used implicitly or explicitly in many previous works

[Liu21, BCCPŠV21, CZ23, CG24, CLMM23, Jer24]

9 / 17



Our results
µ: the uniform distribution of proper q-coloring on a graph G with maximum degree ∆

Theorem

For ε ∈ (0, 1), if q ¾ (1 + ε)∆, then
É there is a fast sampler for µ that runs in time ∆n(logn)poly(ε−1,CI(µ))

É we have a bound for Trel(µ) = epoly(ε−1,CI(µ))n

When the graph is triangle-free and q/∆ > 1.763, then CI(µ) = O(1) [FGYZ21]

Corollary

If G is triangle-free and q/∆ > 1.763, then

É there is a fast sampler for µ that runs in time ∆Õ(n)
É we have a bound for Trel(µ) = O(n)

Compare to previous result for the same setting in [JPV21]:

É Trel(µ) = n1+o(1)

É ⇒ a sampler that runs in time ∆n2+o(1)
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Our results

Our technique also works for two-spin systems

Lemma informal

For two-spin system, CI(µ) ¶ total influence on a self-avoiding walk tree

⇒ CI = O(1) for hardcore / Ising model in the uniqueness regime

Recover the known results for hardcore / Ising model in the uniqueness regime

É Trel(µ) = O(n)
É a fast sampler for µ that runs in time ∆Õ(n)
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Lemma informal

For two-spin system, CI(µ) ¶ total influence on a self-avoiding walk tree

⇒ CI = O(1) for hardcore / Ising model in the uniqueness regime

Let G = (VL ] VR,E) be a bipartite graph

É let ∆L (∆R resp.) denote the maximum degree for vertices in VL (VR resp.)

É the uniqueness threshold for the fugacity λ: λc(∆) := (∆−1)(∆−1)

(∆−2)∆

Let µ be the hardcore model with fugaicity λ on G

Theorem

For δ ∈ (0, 1), C > 0, if λ ¶ (1 − δ)λc(∆L) and ∆R = C × ∆L, then

É there is a fast sampler for µ that runs in time ∆Õ(n)
É we have a bound for Trel(µ) = O(n)
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Proof overview
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µ: the uniform distribution of proper q-coloring on a graph G with maximum degree ∆

Theorem

For ε ∈ (0, 1), if q ¾ (1 + ε)∆, then
É there is a fast sampler for µ that runs in time ∆n(logn)poly(ε−1,CI(µ))

É we have a bound for Trel(µ) = epoly(ε−1,CI(µ))n

Observation: self-reducibility & “easier” conditional distributions

1. Let Λ ⊆ V , for τ ∈ [q]V\Λ, µτ
Λ
is a uniform

distribution of list-coloring on G[Λ] with
new color list b′

v for each vertex v ∈ Λ

2. If
‖b′

v‖1
∆′

v
> 5, for all v ∈ Λ, we know

Tmix(µτ
Λ
) = O(n logn) [DB97]

3. Suppose that G[Λ] has maximum degree

∆′ ¶ θ∆ for some θ ∈ (0, 1)

v

G − v

V \Λ

k

‖b′
v‖1
∆′
v

¾
‖bv‖1 − k

∆′
v = (∆v − k)

¾
ε∆ + (∆ − k)
∆′
v = (∆v − k) ¾ 1 + ε

θ
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Reduce the sampling task to “easier” conditional distributions
for θ ∈ [0, 1], let EZ(µ, θ) be the family of “easier” conditional distributions of µ

EZ(µ, θ) :=
{
µτ
Λ

���� Λ ⊆ V s.t. max degree of G[Λ] ¶ θ∆

τ ∈ [q]V\Λ

}
worst case mixing / relaxation time for “easier” conditional distributions

T
(θ)
rel

(µ) := max {Trel(ν) | ν ∈ EZ(µ, θ)}
T
(θ)
mix

(µ) := max {Tmix(ν) | ν ∈ EZ(µ, θ)}
Theorem

For any θ ∈ (0, 1
2CI(µ) ), there exists ∆0(θ,CI(µ)) such that when ∆ ¾ ∆0, then

É Trel(µ) = 2O(CI(µ)/θ) × T
(θ)
rel

(µ)

É there is a fast sampler for µ that runs in time ∆(logn)O(CI(µ)/θ) × T
(θ)
mix

(µ)

É When ∆ ¶ ∆0, we have Tmix(µ) = O(n logn) directly from [CLV21]

É In the rest part of this talk, we will focus on the second bullet
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A Russian doll approach
to sample from µ

k-partition

V = U1 ]U2 ] · · · ]Uk

For Λ ⊆ [k], let UΛ := ∪i∈ΛUi

block dynamics for µ

1. select i ∈ [k] u.a.r.
2. resample X ∼ µ(· | XUi)

i

block dynamics of µ(· | XUi)
1. select j ∈ [k] \ {i} u.a.r.
2. resample X ∼ µ(· | XUi,j)

i j

· · ·
primitive

sample from µ(· | XU[k]\`)
⇔ sample from µU`(· | XV\U`

)
`
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Fast mixing of block dynamics

block dynamics for µ

1. select i ∈ [k] u.a.r.
2. resample X ∼ µ(· | XUi)

i

Path coupling

for x,y ∈ [q]V s.t. |x ⊕ y| = 1, we have CI(µ) < k =⇒ W1(δxPB, δyPB) < 1

i

0

i

CI(µ)/k
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Thank you
arXiv:2407.04672

Some interesting questions:

Compare our algorithm to Glauber dynamics?

Our algorithm ≈ censored Glauber dynamics

É monotone spin systems✅

É general spin systems❓

This is a new way to show Tmix(µ) = Õ(n)

Better CI bound for coloring?

Many previous works only show CI(µ) ¶ poly(∆)
É CI(µ) = O(1) when q ¾ (1 + ε)∆❓
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