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Proper edge-coloring
» Given a graph G = (V, E) with max degree A
> let[q] ={1,---,q} be a set of colors
» Wesayo:E —[q]isa(proper) g-edge-coloring if
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» When q > A + 1, g-edge-coloring can be found in poly time (Vizing’s thm)
» Decide whether a given graph has A-edge-coloring is NP-hard [Hol81]

» We are interested in sampling a uniformly random q-edge-coloring
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Glauber dynamics

The Glauber dynamics (Xt)t>1 updates its current state X by
1. picking an edge e € E uniformly at random;
2. updating X¢(e) to a uniformly random color ¢ in [q] such that ¢ does not
appear in the neighborhood of e.
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The Glauber dynamics (Xt)t>1 updates its current state X by
1. picking an edge e € E uniformly at random;
2. updating X¢(e) to a uniformly random color ¢ in [q] such that ¢ does not
appear in the neighborhood of e.

Let G be a general graph with m edges and max degree A
» When q > 2A, the Glauber dynamics is ergodic:
Law(X¢) LN w, wpisthe uniform distribution of proper q-edge-colorings
> When q < 2A, the Glauber dynamics is reducible (disconnect) [HINP19]
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Glauber dynamics

The Glauber dynamics (Xt)t>1 updates its current state X by

1.
2.

picking an edge e € E uniformly at random;
updating X¢(e) to a uniformly random color ¢ in [q] such that ¢ does not
appear in the neighborhood of e.

Let G be a general graph with m edges and max degree A

>

When q > 2A, the Glauber dynamics is ergodic:
Law(X¢) LN w, wpisthe uniform distribution of proper q-edge-colorings
When q < 2A, the Glauber dynamics is reducible (disconnect) [HINP19]

We use the T, to denote the first time t such that dry (X¢, 1) < 1/100
Let1=A; > A2 > --- > 0 be eigenvalues of Glauber dynamics. Let
Toel = + be the relaxation time of Glauber dynamics (Tyel ® Tinix)

When q > (2 + o(1))A, it is known that
Tret = O(M19) and Thix = O(mlog m) (when A = O(1)) [WZZ24]
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Glauber dynamics

The Glauber dynamics (Xt)t>1 updates its current state X by
1. picking an edge e € E uniformly at random;

2. updating X¢(e) to a uniformly random color ¢ in [q] such that ¢ does not
appear in the neighborhood of e.

Let G be a tree with n vertices (#edge ~ n) and max degree A

» When q > A + 1, the Glauber dynamics is ergodic: Law(X¢) LN o
> When q < A, the state space of Glauber dynamics becomes disconnected
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» When q > A+ 1, [DHP20] proved Trmix = O(n®) for C = 60
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Glauber dynamics

The Glauber dynamics (Xt)t>1 updates its current state X by
1. picking an edge e € E uniformly at random;

2. updating X¢(e) to a uniformly random color ¢ in [q] such that ¢ does not
appear in the neighborhood of e.

Let G be a tree with n vertices (#edge ~ n) and max degree A

» When q > A + 1, the Glauber dynamics is ergodic: Law(X¢) LN o
> When q < A, the state space of Glauber dynamics becomes disconnected

» When q > A+ 1, [DHP20] proved Trmix = O(n®) for C = 60
> When q=A+1,A =2, [DGJ06] showed that T, = O(n3logn)

Question: what is the exact mixing time for Glauber dynamics on trees?
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Results on trees

Let G be a tree with n vertices (#edge ~ n) and max degree A
» When q > A+ 1, [DHP20] proved Trmix = O(n®) for C = 60
> When q=A+1,A =2, [DGJ06] showed that T, = O(n?logn)

our result: general trees with A = O(1)

» When q > A + 2, we show T = O(n) for Glauber dynamics
> When q > A+ 1, we show T = O(n) for neighboring,edge dynamics

=

allowing update 2 neighboring edges instead of 1 edge

our result: mixing time for Glauber dynamics on trees

» Tmix = O(Trer) X Dlogn, where D is the diameter of the tree

> Tnix = O(nlog?n) for A-regular complete trees when q > A + 2
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Results on A-regular complete trees

> When q > A + 1, [DHP20] proved T = O(n?*°aM) for Glauber dynamics

our result: relaxation time for Glauber dynamics

» When q=A+1, Trel = Anl+O(1/logA)

our result: lower bound on T

» When q = A+ C, we have T = Q(An)
» Tl = w(n) when A = w(l); justify A = O(1) assumption in upper bound

> Recall: when g = A+ 1, A =2, [DGJ06] showed that Ty = O(n3logn)

> Open problem: when q = A+ 1 and A > 3, how to close the n©(/log4) gap
between the lower bound and the upper bound?
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Technical barriers for this problem

» Arbitrary pinning is not allowed: the state space will be disconnected
Sl based approach fails; and the comparison approach in [MSWO04] fails

N
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> Similar challenges have arised in sampling vertex coloring on trees [SZ17]
This approach is hard to apply when sibling variables are not independent
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In the rest part of this talk, we will focus on the proof of the following result
When g = A + 2, then Te) = 04, q(n) for Glauber dynamics on trees

The comparison argument in [DHP20]:
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Glauber dynamics: pick Tg?' Block dynamics: pick Tg‘ Glauber dynamics: pick
an e@-edge and update an e@-edge and update an e@-edge and update
the associated block

Tel = O(n) on A-regular complete trees = T, = O(n) on arbitrary trees
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We assume A, q be constants and consider A-regular complete trees:

To )T}
T1
T3

TN /
NNNr N NP
AAANANNAT  AAAA

ti: uniform dist. on Ty; py: uniform dist. on T (r only have q — A + 1 colors)

k|

~

> Let X ~ uy, forall f € Q(ux) — R, let F := £(X) be a random real number
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We assume A, q be constants and consider A-regular complete trees:
To 1 YTS}
k|

TN .
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ti: uniform dist. on Ty; py: uniform dist. on T (r only have q — A + 1 colors)

~

> Let X ~ uy, forall f € Q(ux) — R, let F := £(X) be a random real number
» Tl = O(n) & the opprox tensorization of variance (AT of Var):

var [F] < Z Ci ) E[Var[F| X.]] (X-e = X(Tx — €))
= eel.(1)
such that Ci&)(l) foralli )
(f, f) (f,(I - Q)f) (Rayleigh quotient)
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To )T}
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We assume A, q be constants and consider A-regular complete trees:
To 1 WS}
k|

TN )
AN NF. N NP
ANANAAN AAAN

wk: uniform dist. on Ty; wy: uniform dist. on Ty (v only have q — A + 1 colors)
> Let Y ~ uy, for f € Q(u)) — R, let F := f(Y) be a random real number

[DHP20]: AT of Var on small tree = AT of Var on large trees (via induction)

> AT of Var for p & AT of Vor for uy:

var [F Zoq Y E[Var[F| Y.l

= eel (1)
such that: £ = O(1) && o < 1 && o5 = O(1), forj < ¢

~
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We assume A, q be constants and consider A-regular complete trees:

To )T}
T1
T3

TN /
NNNr N NP
AAANANNAT  AAAA

ti: uniform dist. on Ty; py: uniform dist. on T (r only have q — A + 1 colors)
> LetY ~ uy, for f € Q(uy) — R, let F := f(Y) be a random real number

k|

~

the oy < 1 requirement is problematic:
> [DHP20] showed a barrier that when £ =1, ocg > 1
» we have considered { = 2, but doesn’t work out
» for larger € = O(1), this “small to large” argument doesn’t really benefit us
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We assume A, q be constants and consider A-regular complete trees:
To 1 WS}
k|

TN )
AN NF. N NP
ANANAAN AAAN

wk: uniform dist. on Ty; wy: uniform dist. on Ty (v only have q — A + 1 colors)
> Let Y ~ uy, for f € Q(u)) — R, let F := f(Y) be a random real number

~

theorem (prove by a refined induction)
> AT of Var for w & approx. root tensorization of variance (ART of Var):

var [E[F| Y(r)]] Zocl > E[Var[F| Yl

i=0 eel (1)
such that: £ = O(1) && o < 1 && o5 = O(1), forj < €
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0 }TS} wy: uniform dist. on proper q-edge-colorings of Ty

/\ T* > Let Y~ for f € Q(u}) — R let F:= f(Y)
E - ART of Var: .
/\ /\ < Var[E[FI YOI <) o Y E[Var[F| Y]]

/\ /\ /\ I\ st L=0(1) && g < 1i=&?& ocjeeer(()i)(l), forj <t

Intuition: move the mass from ;"™ to u’g’“_b (via GD) with small congestion

canonical path y©-©

~ -
((iiiieg -

picked by coupling €qp
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0 }Tg} wy: uniform dist. on proper q-edge-colorings of Ty

/\ T* > LetY ~ uy, for f € Q(uy) — Rlet F:= £(Y)
2 - ART of Var: .
/\ /\ Var[E[F| YMI < ) o > E[Var[F| Y]l

/\ /\ l\ l\ st £=0(1) && o < 1120& ocjeE:LT(Oi)(l), forj < (¢

We define the congestion &; for the i-th level as

2
(Pr(o,t)~cay [(s = 1) € YO T])
- :(S)Q(s t) and & := > E(so)
’ (s>t):(s@t)el (1)

Lemma

It holds that oy < (£ + 1)&; foralli < ¢

(t-v(sr—>t) =

» (A, q=0(1)sothat o; = O(1),Vi< ¢
> We only left to show ay < 1

9/16



canonical path yo®

Or -

picked by coupling Cab

He *,Tb
He

2var [E[F| Y("]] Y L (@uy, () E[FIY() = al -E[F| Y(r) = b])°

a,be[q-A+1]

2
PTRCRCT S RN UCERL)

a,be[q-A+1] (00)~Cap

2
5 u;’r(amzr(b)( B [ > (f(t)—f(s»])

~C
a,be[q-A+1] (0,9)~Cap (sot)eyo T

We can finish the proof by applying Cauchy’s inequality and rearrange 10/16



The coupling

Let a = -, b = e; the coupling is defined by flipping the «-e-alternating path
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The canonical path (global plan)
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The canonical path (Stage-I)
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The congestion analysis (over simplified)

i A\ » Consider the probability space of s ~ uz
,"_: ) \ » For each e-edge e on the alternating path, let
\\\ ]\ /' P(s) := # {dashed paths that touch the leaves}

\ Ay

\

Proof sketch for op < (L+1)&¢ < 1
1. We can bound the congestion by

E~El Y #{0D] (1) ey} =E[P-AP)]
t:sdtel (€)
2. There is an exp. decay so that the paths won’t be very long

3. W.h.p., there is only very few of them can touch the leaves (P is small)
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Why such analysis fails when q = A+ 1

It should fail, otherwise, we contradict to the ®(n?logn) result in [DGJ06] &

/\ PN
/\ A A

This problem can be fixed by allowing neiboring-edge updates =
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Thank you

arXiv:2407.04576

Summary: general trees with A = O(1)

» When q > A + 2, we show T = O(n) for Glauber dynamics
» When q > A + 1, we show T = O(n) for neighboring edge dynamics
> For GD: Thix = O(Tye) X Dlogn, where D is the diameter of the tree

Open problems
> When A > 3,q=A+1, for GD, show T = O(n) or w(n) on A-reg. complete trees

> T = An'toal) and Q(An) is already known (this work)
> when A = 2 [DGJ06] shows Tre = O(n3 logn) (special, depth # O(logn))

» How to combine the idea of coupling and canonical path in more general setting?
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