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Approximate counting/sampling

Given a function wt : {0, 1}
n → R≥0:

exact counting

compute the partition function

Z :=
∑

x∈{0,1}n

wt(x)

usually very hard

exact sampling

draw sample X from distribution

µ :=
wt

Z

approximate counting

Find an estimation Ẑ such that

(1− ε)Z ≤ Ẑ ≤ (1+ ε)Z

⇔ Jerrum-Valiant-Vazirani’86

approximate sampling

draw a random X ∈ {0, 1}
n
such that

‖µ− Law(X)‖TV ≤ ε

Examples including: (perfect) matchings, independent sets, spanning trees
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Matchings (monomer-dimer model)
Let G = (V, E) be a simple graph and λ > 0 be the edge weight

I weight function: ∀M ⊆ E, wt(M) := λ|M|1[M is a matching]

I partition function: Z :=
∑

Mwt(M)

I Gibbs distribition: µ := wt/Z

Matchings of :

I 1

I , , , λ

I , λ2

Z = 1+ 4λ+ 2λ2

Some terminologies

unmatched edge

matched edge

unsaturated vertex

saturated vertex

4 / 26



Jerrum-Sinclar chain

The Jerrum-Sinclair chain PJS updates a matching Xt to Xt+1 as follow:

1. select e = {u, v} ∈ E, u.a.r.

2. propose a new matching M from following exclusive cases:

(↑) if u and v are unsaturated, let M← Xt ∪ {e}
(↓) if e ∈ Xt, let M← Xt \ {e}
(↔) if one end point is unsaturated and the other is saturated,

say u is saturated by edge e ′ and v is not, let M← Xt \ {e
′} ∪ {e}

(⊥) otherwise, let M← Xt

3. with probability min {1, µ(M)/µ(Xt)} set Xt+1 ←M; otherwise, set Xt+1 ← Xt

↑ ↑
↑↑

↑ ↔
↓↔

↓ ↔
↑↔

↓ ⊥
↓

⊥

↔ ↓↔↑

↔ ↑↔↓

⊥
↓⊥↓

Lazy Jerrum-Sinclair chainzzz

Pzz :=
1
2
(PJS + I)

MCMC method: run Pzz for t steps
(sufficiently large); then output Xt

Mixing time: Tmix(Pzz) := max
x

min

{
t

∣∣∣∣∥∥Pt
zz(x, ·) − µ

∥∥
TV

≤ 1

100

}
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Results for mixing (n = |V |, m = |E|)

Jerrum-Sinclair’89: General graph; constant λ > 0,

Tmix(Pzz) = Õ(n2 ·m) (via canonical path)

Chen-Liu-Vigoda’21: Graph with max degree ∆; constant λ > 0

Tmix(Glauber dynamics) = O(∆∆2

m logn)
(strong spatial mixing + spectral independence)

Glauber dynamics ≈ Pzz only allows (↓) and (↑) transitions
C-Yang-Yin-Zhang’24: Graph max degree ∆ and girth = Ω(

√
∆ log∆); constant λ > 0

Tmix(Glauber dynamics) = Õ(∆c · n ·m), for some universal constant c
(approximate inversion + spectral independence)

C-Chen-Chen-Yin-Zhang’25 (concurrent work): General graph; 0 < λ ≤ 1

Tmix(Glauber dynamics) = Õ(
√
∆ · n ·m)

(field dynamics trickle down + spectral independence)
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√
∆ · n ·m)

(field dynamics trickle down + spectral independence)

6 / 26



Results for mixing (n = |V |, m = |E|)

Jerrum-Sinclair’89: General graph; constant λ > 0,
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Results for mixing
Techniques with best kown mixing time bounds applying them alone or with SI

mixing time

of Markov chains

spectral

independence

geometry of

polynomials

O(∆∆2

m logn)

strong

spatial mixing

O(∆∆2

m logn)

Markov chain

coupling

λ < 1
∆
, O(m logn)

approximate

inversion

large girth, Õ(∆c · n ·m)

trickling

down

λ ≤ 1, Õ(
√
∆ · n ·m)

canonical

path

Õ(n2 ·m)
❓

Our result

Tmix(Pzz) = O(∆m ·min {n,∆ log∆ · logn}) = Õ(∆2 ·m)

Corollary:

Tmix(Glauber dynamics) = Õ(∆3 ·m)
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Mixing time analysis via local functional inequalities
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Functional inequalities

Distribution µ over Ω ⊆ 2E Random variable F = f(X) for f : Ω→ R≥0 and X ∼ µ

entropy

Ent [F] := E [F(log F− logE [F])]

variance

Var [F] := E[F2] − E [F]
2

Inner product for functions f, g : Ω→ R≥0: 〈f, g〉µ := E [f(X)g(X)]
Dirichlet form Markov chain P with stationary distribution µ

EP(f, f) := 〈f, (I− P)f〉µ=

for reversible chains

1

2

∑
x,y∈Ω

µ(x)P(x, y)(f(x) − f(y))2

log-Sobolev inequality

∀f ∈ RΩ
≥0, ρ(P) · Ent[F2] ≤ EP(f, f)

Tmix(Pzz) = ρ(PJS)
−1

O(∆2m)

×O(logn)

Poincaré inequality

∀f ∈ RΩ
≥0, γ(P) · Var [F] ≤ EP(f, f)

Tmix(Pzz) = γ(PJS)
−1

O(∆m)

×O(n)
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Pinnings

Pinning: τ is a 0-1 vector in {0, 1}
Λ
(Λ ⊆ E) which indicates an event that

∀e ∈ Λ,

{
e ismatched, τe = 1

e is unmatched, τe = 0

Feasible pinning: if M(τ) := {e ∈ Λ | τe = 1} is a matching

Conditional distributions induced by pinning: µτ := µ(· | τ)

µτ monomer-dimer model

on the new graph

In particular, µ∅ = µ
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Local functional inequalities

Family of chains:

Q :=

{
Qτ

∣∣∣∣ τ is a feasible pinning

Qτ has stationary distribution µτ

}
Concave Dirichlet forms*️⃣: ∀Λ ⊆ E, ∀τ ∈ {0, 1}

E\Λ
, we have

1

|Λ|

∑
e∈Λ

E
c∼µτ

e

[
EQτ]{e←c}(f, f)

]
︸ ︷︷ ︸

average of Dirichlet forms

≤ EQτ(f, f)

Pinning τ ] {e← c} extends τ by giving a random edge e a random state c

Local functional inequalities: ∀Λ ⊆ E, ∀τ ∈ {0, 1}
E\Λ

, let X ∼ µτ and F = f(X),

α-local log-Sobolev inequalities

∀f, α

|Λ|

∑
e∈Λ

Ent
[
E
[
F2 | Xe

]]
≤ EQτ(f, f)

local-to-global: +*️⃣ =⇒ ρ(Q) ≥ α
m

α-local Poincaré inequalities

∀f, α

|Λ|

∑
e∈Λ

Var [E [F | Xe]] ≤ EQτ(f, f)

local-to-global: +*️⃣ =⇒ γ(Q) ≥ α
m
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Local-to-global
everything works if Ent[·] → Var[·] and F2 → F

Let (Xt)
m
t=0 be a Markov chain s.t.

1. X0 = ∅

2. given Xt ∈ {0, 1}
E\Λ

, get Xt+1 by

2.1 draw e ∈ Λ u.a.r

2.2 draw c ∼ µXt
e

2.3 let Xt+1 ← Xt ] {e← c}

Observation: Xm ∼ µ

Goal: fix f : Ω→ R≥0, let F = f(Xm), show

Ent[F2] ≤ ρ(Q)−1EQ(f, f)

1 Define: Ent(t) := E
[
Ent[F2 | Xt]

]
I Ent(0) = Ent[F2]
I Ent(m) = 0

2 Telescoping sum:

Ent[F2] = Ent(0) − Ent(m)

=

m−1∑
t=0

(Ent(t) − Ent(t+ 1))︸ ︷︷ ︸
=:4t

3 Law of total ent.:

4t = E
[
Ent[F2 | Xt]

]
− E

[
Ent[F2 | Xt+1]

]
= E

[
Ent[F2 | Xt] − E

[
Ent[F2 | Xt+1] | Xt

]]
= E

[
Ent[E[F2 | Xt+1] | Xt]

]
4 α-local log-Sobolev ineq.:
4t ≤ α−1 E

[
EQXt (f, f)

]
≤ α−1EQ(f, f) (concave Diri. form)

2 + 4 : Ent[F2] ≤ α−1m · EQ(f, f)

=⇒ ρ(Q) ≥ α/m �
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Ent[F2] ≤ ρ(Q)−1EQ(f, f)

1 Define: Ent(t) := E
[
Ent[F2 | Xt]

]
I Ent(0) = Ent[F2]
I Ent(m) = 0

2 Telescoping sum:

Ent[F2] = Ent(0) − Ent(m)

=

m−1∑
t=0

(Ent(t) − Ent(t+ 1))︸ ︷︷ ︸
=:4t

3 Law of total ent.:

4t = E
[
Ent[F2 | Xt]

]
− E

[
Ent[F2 | Xt+1]

]
= E

[
Ent[F2 | Xt] − E

[
Ent[F2 | Xt+1] | Xt

]]
= E

[
Ent[E[F2 | Xt+1] | Xt]

]
4 α-local log-Sobolev ineq.:
4t ≤ α−1 E

[
EQXt (f, f)

]
≤ α−1EQ(f, f) (concave Diri. form)

2 + 4 : Ent[F2] ≤ α−1m · EQ(f, f)

=⇒ ρ(Q) ≥ α/m �
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Intuition and establishment of local functional inequalities
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Transport flows

Distributions: µ and ν over state space Ω
Markov chain: Q over state space Ω

Transport flow Γ from µ to ν through Q is a distribution over all paths of the transition

graph of Q, such that for γ ∼ Γ :

I its starting point s = s(γ) follows the distribution µ

I its end point t = t(γ) follows the distribution ν

a path in Q’s transition graph

forms a coupling C of µ and ν

s

t

µ
ν
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Local functional inequalities via transport flow

Theorem

If there is a family of transport flows{
Γe from µe←0 to µe←1 | e ∈ E

}
,

s.t. the κ-(strong) expected congestion bound is satisfied: ∀ transition (x 7→ y) of Q,∑
e∈E

µe(0)µe(1) E
γ∼Γe

[`(γ) · 1[(x 7→ y) ∈ γ]] ≤ κ · µ(x)Q(x, y),

then the α-local log-Sobolev inequality is satisfied

∀f : Ω→ R≥0,
α

m

∑
e∈E

Ent
[
E
[
F2 | Xe

]]
≤ EQ(f, f), with α = Ω

(
m

κ log 1
φ

)
,

where φ ≤ min {µe(c) | e ∈ E, c ∈ {0, 1}} is the marginal lower bound.

Remark: it is safe to think φ ≈ 1
∆
in our application
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Proof outline: local functional inequalities via transport flow
1 Note that E

[
F2 | Xe

]
is a function of Xe

2 By log-Sobolev ineq. of µe by Diaconis and Saloff-Coste’96

Ent
[
E
[
F2 | Xe

]]
≤ O

(
log

1

φ

)
Var

[√
E [F2 | Xe]

]
3 Note that Ω(µe) = {0, 1}

Var
[√

E [F2 | Xe]

]
= µe(1)µe(0)

(√
E [F2 | Xe = 0] −

√
E [F2 | Xe = 1]

)2

= µe(1)µe(0)

(√
E

γ∼Γe
[f2(s(γ))] −

√
E

γ∼Γe
[f2(t(γ))]

)2

4 Note that (x, y) 7→ (
√
x−

√
y)2 is convex on R2, by Jensen’s ineq. on R2

Var
[√

E [F2 | Xe]

]
≤ µe(1)µe(0) E

γ∼Γe
[f(s(γ)) − f(t(γ))]

2

= µe(1)µe(0) E
γ∼Γe

 ∑
(x 7→y)∈γ

(f(x) − f(y))

2

16 / 26



Proof outline: local functional inequalities via transport flow
1 Note that E

[
F2 | Xe

]
is a function of Xe

2 By log-Sobolev ineq. of µe by Diaconis and Saloff-Coste’96

Ent
[
E
[
F2 | Xe

]]
≤ O

(
log

1

φ

)
Var

[√
E [F2 | Xe]

]
3 Note that Ω(µe) = {0, 1}

Var
[√

E [F2 | Xe]

]
= µe(1)µe(0)

(√
E [F2 | Xe = 0] −

√
E [F2 | Xe = 1]

)2

= µe(1)µe(0)

(√
E

γ∼Γe
[f2(s(γ))] −

√
E

γ∼Γe
[f2(t(γ))]

)2

4 Note that (x, y) 7→ (
√
x−

√
y)2 is convex on R2, by Jensen’s ineq. on R2

Var
[√

E [F2 | Xe]

]
≤ µe(1)µe(0) E

γ∼Γe
[f(s(γ)) − f(t(γ))]

2

= µe(1)µe(0) E
γ∼Γe

 ∑
(x 7→y)∈γ

(f(x) − f(y))

2

16 / 26



Proof outline: local functional inequalities via transport flow
1 Note that E

[
F2 | Xe

]
is a function of Xe

2 By log-Sobolev ineq. of µe by Diaconis and Saloff-Coste’96

Ent
[
E
[
F2 | Xe

]]
≤ O

(
log

1

φ

)
Var

[√
E [F2 | Xe]

]
3 Note that Ω(µe) = {0, 1}

Var
[√

E [F2 | Xe]

]
= µe(1)µe(0)

(√
E [F2 | Xe = 0] −

√
E [F2 | Xe = 1]

)2

= µe(1)µe(0)

(√
E

γ∼Γe
[f2(s(γ))] −

√
E

γ∼Γe
[f2(t(γ))]

)2

4 Note that (x, y) 7→ (
√
x−

√
y)2 is convex on R2, by Jensen’s ineq. on R2

Var
[√

E [F2 | Xe]

]
≤ µe(1)µe(0) E

γ∼Γe
[f(s(γ)) − f(t(γ))]

2

= µe(1)µe(0) E
γ∼Γe

 ∑
(x 7→y)∈γ

(f(x) − f(y))

2

16 / 26



Proof outline: local functional inequalities via transport flow
1 Note that E

[
F2 | Xe

]
is a function of Xe

2 By log-Sobolev ineq. of µe by Diaconis and Saloff-Coste’96

Ent
[
E
[
F2 | Xe

]]
≤ O

(
log

1

φ

)
Var

[√
E [F2 | Xe]

]
3 Note that Ω(µe) = {0, 1}

Var
[√

E [F2 | Xe]

]
= µe(1)µe(0)

(√
E [F2 | Xe = 0] −

√
E [F2 | Xe = 1]

)2

= µe(1)µe(0)

(√
E

γ∼Γe
[f2(s(γ))] −

√
E

γ∼Γe
[f2(t(γ))]

)2

4 Note that (x, y) 7→ (
√
x−

√
y)2 is convex on R2, by Jensen’s ineq. on R2

Var
[√

E [F2 | Xe]

]
≤ µe(1)µe(0) E

γ∼Γe
[f(s(γ)) − f(t(γ))]

2

= µe(1)µe(0) E
γ∼Γe

 ∑
(x 7→y)∈γ

(f(x) − f(y))

2

16 / 26



Proof outline: local functional inequalities via transport flow
1 - 4 together:

Ω

(
1

log 1
φ

)
Ent

[
E
[
F2 | Xe

]]
≤ µe(1)µe(0) E

γ∼Γe

 ∑
(x 7→y)∈γ

(f(x) − f(y))

2

5 By Cauchy-Schwarz inequality

Ω

(
1

log 1
φ

)
Ent

[
E
[
F2 | Xe

]]
≤ µe(1)µe(0) E

γ∼Γe

`(γ) · ∑
(x7→y)∈γ

(f(x) − f(y))2


= µe(1)µe(0)

∑
(x7→y)

E
γ∼Γe

[`(γ) · 1[(x 7→ y) ∈ γ]] (f(x) − f(y))2

6 Take summation over e and compare with the Dirichlet form term by term

EQ(f, f) =
1

2

∑
(x 7→y)

µ(x)Q(x, y)(f(x) − f(y))2
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Local functional inequalities via transport flow
If there is a family of transport flows{

Γe from µe←0 to µe←1 | e ∈ E
}
,

s.t. the κ-(strong) expected congestion bound is satisfied: ∀ transition (x 7→ y) of Q,∑
e∈E

µe(0)µe(1) E
γ∼Γe

[`(γ) · 1[(x 7→ y) ∈ γ]] ≤ κ · µ(x)Q(x, y),

then the α-local log-Sobolev inequality is satisfied

∀f : Ω→ R≥0,
α

m

∑
e∈E

Ent
[
E
[
F2 | Xe

]]
≤ EQ(f, f), with α = Ω

(
m

κ log 1
φ

)
,

where φ ≤ min {µe(c) | e ∈ E, c ∈ {0, 1}} is the marginal lower bound.

Theorem

There is a family of transport flows such that κ = O(∆2m) for PJS
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Construction of the transport flow Γe: local-flip coupling

Local-flip coupling

Let X, Y be two random matchings generated as follow:

I sample X ∼ µe←0 and Z ∼ µe←1 independently

the difference between X and Z are paths and cycles

I let D be the unique path/cycle that contains e

I let Y = ZD ∪ XE\D

Fact

I X ∼ µe←0

I Y ∼ µe←1

e

X

e

Z

e

Y
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Construction of the transport flow Γe: JS’s canonical path

smallest vertex

↓

↔

↔
↑

smallest endpoint

↓

↔

↔
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Construction of the transport flow Γe

Construction of {Γe | e ∈ E}

I let X ∼ µe←0 and Y ∼ µe←1 be sampled from the local-flip coupling

I let γ be the canonical path from X to Y, then Law(γ) = Γe

Goal: ∀ transition (α 7→ β) of PJS,∑
e∈E

µe(0)µe(1) E
γ∼Γe

[`(γ) · 1[(α 7→ β) ∈ γ]] ≤ O(∆2m) · µ(α)PJS(α,β) (⭐)

Issue: it is hard to analysis multiple couplings together
e

h

x

e

h

y

local-flip coupling is highly symmetric

Claim

µe(0)µe(1) Pr
(X,Y)∼Γe

[X = x, Y = y]

=µh(0)µh(1) Pr
(X,Y)∼Γh

[X = x, Y = y]
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γ∼Γe

[`(γ) · 1[(α 7→ β) ∈ γ]] ≤ O(∆2m) · µ(α)PJS(α,β) (⭐)

Issue: it is hard to analysis multiple couplings together

Decoupling lemma

∀ transition (α 7→ β), if h ∈ E s.t. αh 6= βh, then (⭐) holds if

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]
≤ O(∆2m) · µ(α)PJS(α,β)

= O(∆2) ·min {µ(α), µ(β)}
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Congestion analysis: α⊕ β = {h} {↓, ↑}-transitions
Goal

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]
≤ O(∆2) ·min {µ(α), µ(β)}

Observation: If αh = 0 and βh = 1, then (α 7→ β) ∈ γ⇐⇒ Y = β

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[Y = β]
]
= µh(0)µh(1) E

Γh

[
|X⊕ Y|

2
| Y = β

]
Pr
Γh

[Y = β]

= µh(0)µ(β) E
Γh

[
|X⊕ Y|

2
| Y = β

]
Lemma

∀h ∈ E, ∀p ≥ 0, E
Γh

[
|X⊕ Y|

p
| Y = β

]
= Op(∆

p)

Proved by a standard percolation analysis w.r.t. local-flip coupling

This implies⇒ µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[Y = β]
]
= µh(0)µ(β)O(∆2) ≤ O(∆2)min {µ(α), µ(β)}

The αh = 1, βh = 0 case is symmetric
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Γh

[
|X⊕ Y|

2 · 1[Y = β]
]
= µh(0)µ(β)O(∆2) ≤ O(∆2)min {µ(α), µ(β)}

The αh = 1, βh = 0 case is symmetric
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Congestion analysis: α⊕ β = {h} {↓, ↑}-transitions
Goal

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]
≤ O(∆2) ·min {µ(α), µ(β)}

Observation: If αh = 0 and βh = 1, then (α 7→ β) ∈ γ⇐⇒ Y = β
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Congestion analysis: α⊕ β = {h, g} ↔-transitions
(also works for cycles after some adjustment)

Q: how to understand (α 7→ β) ∈ γ ? Jerrum-Sinclair’89 hints a change of variable

h

g

w

X

h

g

w

α

h

g

w

β

h

g

w

Y
h

g

w

X̃ := Y4Dh

h

g

w

Ỹ := Y4Dg = α ∪ β

This means we can rewrite the expectation

E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]

= E
Γh

[∣∣∣X̃⊕ Ỹ
∣∣∣2 · 1[Ỹ = α ∪ β]

]
Q: how to understand the law of X̃ and Ỹ?
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Congestion analysis: α⊕ β = {h, g} ↔-transitions
(also works for cycles after some adjustment)

The following is new compare to Jerrum-Sinclair’s analysis

h

g

w

X̃ := Y4Dh

h

g

w

Ỹ := Y4Dg = α ∪ β

X̂ := proj(X̃)

h?

Ŷ := proj(Ỹ)

h?

(X̃, Ỹ) corresponds to matchings on Ĝ:
h?

Ĝ

delete edges around w except h, g
and merge g, h into a single edge

Lemma

(X̃, Ỹ) 7→ (X̂, Ŷ)
is an injection

Lemma

transport flow Γ̂h? for µ̂ = µĜ satisfies

µh(0)µh(1)Pr
Γh

[
(X̃, Ỹ)

]
= O((Ẑ/Z)2)µ̂h?(0)µ̂h?(1) Pr

Γ̂h?

[
(X̂, Ŷ)

]
partition functions: Z = 1

µ(∅) and Ẑ = 1
µ̂(∅)

24 / 26



Congestion analysis: α⊕ β = {h, g} ↔-transitions
(also works for cycles after some adjustment)

The following is new compare to Jerrum-Sinclair’s analysis

h

g

w

X̃ := Y4Dh

h

g

w
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Congestion analysis: α⊕ β = {h, g} ↔-transitions
(also works for cycles after some adjustment)

This means we have

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]

=µh(0)µh(1) E
Γh

[∣∣∣X̃⊕ Ỹ
∣∣∣2 · 1[Ỹ = α ∪ β]

]
=O((Ẑ/Z)2) · µ̂h?(0)µ̂h?(1) Ê

Γh?

[∣∣∣X̂⊕ Ŷ
∣∣∣2 · 1[Ŷ = proj(α ∪ β)]

]
Similar to the case α⊕ β = {h}, we have

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]
= O((Ẑ/Z)2) · µ̂h?(0)µ̂(proj(α ∪ β))∆2

Note that Ẑ =
∑

M∈Ĝ λ|M| ≤
∑

M∈G λ|M| = Z, and

µh(0)µh(1) E
Γh

[
|X⊕ Y|

2 · 1[(α 7→ β) ∈ γ]
]
= O(∆2)

λ|proj(α∪β)|

Z
= O(∆2)min {µ(α), µ(β)}
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∑
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Thank you
arXiv:2504.02740

Conclusion

Better bounds for Poincaré inequality and log-Sobolev inequality follows from

I low (one-sided) discrepancy coupling of µe←a and µe←b, i.e.

small E
[
|X⊕ Y|

p
| Y = y

]
for some p ≥ 0

I good construction of canonial paths

Future directions:

I Find more applications: e.g.

permanent, Ising model, switch/flip chain for sampling regular graphs

(note that it is acceptable that descrepancy = nc for some c ∈ (0, 1))

I The relationship between local functional inequalities with SI and EI?

I Exact mixing time bound for matchings: Õ(∆cm), c = ?
possible candidates: c ∈ {0, 0.5, 1, 2

this work

}
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