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Approximate counting/sampling

Given a function wt : {0, 1} — Rxo:

compute the partition function Find an estimation Z such that
Z= ) wix)
x€{0,1)" (1—e)Z<Z<(1+¢Z

usually very hard
e L Jerrum-Valiant-Vazirani’86

exact sampling approximate sampling

draw sample X from \(/jvltstnbutlon & e ) e B, T s et
wi=— I — Law(X)lly < ¢

Examples including: (perfect) matchings, independent sets, spanning trees
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Matchings (monomer-dimer model)
Let G = (V,E) be a simple graph and A > 0 be the edge weight

» weight function: YM C E, wt(M) := AIMIT1[M is a matching]
» partition function: Z:= } ,, wt(M)
» Gibbs distribition: w:=wt/Z

Matchings of Some terminologies

matched edge
> 1 ‘ saturated vertex
» , , , A
> , A2 ‘

unsaturated vertex
unmatched edge

Z=1+4\+2)\°
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Jerrum-Sinclar chain
The Jerrum-Sinclair chain Pys updates a matching X to X1 as follow:
1. select e ={u,v} € E, uar
2. propose a new matching M from following exclusive cases:

(T if wand v are unsaturated, let M « X; U {e}
(1) ifee Xy, let M « X\ {e}
(+») if one end point is unsaturated and the other is saturated,
say u is saturated by edge e’ and v is not, let M « X; \ {e’} U {e}
(L) otherwise, let M «+ X;

3. with probability min{1, u(M)/u(X¢)} set X1 « M; otherwise, set X1 « X
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Jerrum-Sinclar chain

The Jerrum-Sinclair chain Pys updates a matching X to X1 as follow:

1. select e ={u,v} € E, uar

2. propose a new matching M from following exclusive cases: I

(T if wand v are unsaturated, let M « X; U {e}
(i) ifee )(t,let M — X¢ \ {e} .
(+») if one end point is unsaturated and the other is saturated,

say u is saturated by edge e’ and v is not, let M « X; \ {e’} U {e}
(L) otherwise, let M «+ X;

3. with probability min{1, u(M)/u(X¢)} set X1 « M; otherwise, set X1 « X

Lazy Jerrum-Sinclair chain=" MCMC method: run P, for t steps
(sufficiently large); then output X,

Pz = % (Pis+1)

- o . 1
Mixing time:  Tmix(Pzz) = max min {t ‘ P2, (%, ) — uHTV < 700 }
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Results for mixing (n =V, m=[E])

Jerrum-Sinclair'89: General graph; constant A > 0,

Tmix(Pzz) = O(n? - m) (via canonical path)
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Results for mixing (n =V, m=[E])

Jerrum-Sinclair'89: General graph; constant A > 0,

Trix(P2z) = O(n? - m) (via canonical path)
Chen-Liu-Vigoda21: Graph with max degree A; constant A > 0
Tox(Glauber dynamics) = O(A2 mlogn)
(strong spatial mixing + spectral independence)
Glauber dynamics ~ P,, only allows (]) and (T) transitions
-Yang-Yin-Zhang'24: Graph max degree A and girth = Q(v/Alog A); constant A > 0

Tix (Glauber dynamics) = O(A® - n - m), for some universal constant ¢
(approximate inversion + spectral independence)

-Chen-Chen-Yin-Zhang'25 (concurrent work): General graph; 0 < A <1

Trix(Glauber dynamics) = O(VA - n - m)
(field dynamics trickle down + spectral independence)
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Results for mixing
Techniques with best kown mixing time bounds applying them alone or with SI

Markov chain

mixing time
of Markov chains

canonical

/ T

coupling  [===----2 N spectral o
] independence
A < Al ()(1TI|O€}T1) ”"”’,ffv ///z Fg\\\\
=T
geometry of strong a

polynomials

spatial mixing

inversion

0(A%" mlogn)

0(A%" mlogn) large girth, O(A® - n - m)

_ path

Om?-m)

(m trickling

down

Ag],@(\/ﬂn-m)
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Results for mixing
Techniques with best kown mixing time bounds applying them alone or with SI

mixing time , canonical
of Markov chains [ e path
Markov chain — | I O(m?-m)
coupling  [====---4 N spectral i :
] independence
A < %, 0(mlogn)

geometry of strong approximate trickling

polynomials spatial mixing inversion down

0(A%" mlogn) 0(A%" mlogn) large girth, O(A® - n-m) A<1,0(VA -n-m)

Our result
Trix(P2z) = O(Am - min{n, Alog A - logn}) = O(A% - m)

Corollary: ~
Trix(Glauber dynamics) = O(A® - m)
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Mixing time analysis via local functional inequalities
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Functional inequalities

Distribution p over Q C 2E Random variable F = f(X) forf: Q — Rspand X ~
W >
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Functional inequalities

Distribution p over Q C 2F Random variable F = f(X) for f: Q — Rspand X ~
Ent[F] := E [F(log F — log E [F])] Var [F] := E[F?] — E [F]*

Inner product for functions f,g: Q — Rxo: (f, g),, := E[f(X)g(X)]
Dirichlet form Markov chain P with stationary distribution p

Ep(f, )= (6, (1= P)), =5 3 w(Ploy)(x) — y)?
xX,yeQ

for reversible chains

log-Sobolev inequality Poincaré inequality

Vf e RZ,, p(P)-Ent[F?] < Ep(f,f) Vf e RS, v(P)- Var[Fl < &p(f, )
Trix(Pzz) = p(PJS)_1 x O(logn) Thiee(Pz)) = 'Y(PJS)i1 x O(n)
| |
o(AZm) O(Am)
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Pinnings

Pinning: T is a 0-1 vector in {0, 1}/\ (A C B) which indicates an event that
e is matched, Te =1

e isunmatched, t.=0

Feasible pinning: if M(t) :={e € A | te¢ = 1}is a matching

Ve € A,

Conditional distributions induced by pinning: u* := u(- | 1)

monomer-dimer model
on the new graph

In particular, u? =
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Local functional inequalities

Family of chains:
0= {QT
k)

T is a feasible pinning
QT has stationary distribution p®
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Local functional inequalities
Family of chains:

Concave Dirichlet forms ﬂ VA CE, V1 €0, 1}E\A we have
I/\I Z E. [Eqrueca (1] < Eqe(f, 1)

T is a feasible pinning
QT has stationary distribution p®

average of Dirichlet forms
Pinning T W {e « c} extends T by giving a random edge e a random state ¢
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Local functional inequalities

Family of chains:
Q= {QT
Concave Dirichlet forms E¥ YA C E, ¥t € {0, T}E\A, we have

1
[Al 2 E [eqreeal(f,N] < Eq:(f1)
ecN €

T is a feasible pinning
QT has stationary distribution p®

average of Dirichlet forms
Pinning T W {e « c} extends T by giving a random edge e a random state ¢

Local functional inequalities: VA C E, VT € {0, 1}E\A, let X ~ u™ and F = f(X),

x-local log-Sobolev inequalities a-local Poincaré inequalities

o o«

Vi, — > Ent[E[F?|Xe]] < &q-(f,f) ¥f, — ) Var[E[F| Xll < Eq«(f,f)
A\ Al =

local-to-global: + B3 = p(Q) > & local-to-global: + B = y(Q) > &
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Local-to-global

everything works if Ent[-] — Var[-] and F> — F
Let (X¢){*, be a Markov chain sit.
1. Xo=9
2. given X € {0, 1}E\A, get X¢41 by

21 drawe € A u.ar
2.2 draw ¢ ~ pXt
2.3 let Xt+] — Xt (] {e — C}

Observation: X; ~
Goal: fix f: Q — Rxo, let F = f(X), show

Ent[F?] < p(Q)'€q(f, )
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» Ent(m) =0

@ Telescoping sum:
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m—1
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® Low of total ent:
Ay =E [Ent[F? | Xd] — E [Ent[F* | X¢41]]

=E [Ent[F* | X¢] —E [Ent[F? | Xei1] | X¢]]
=E [Ent[E[F? | Xei1] | X¢]]

@ «-local log-Sobolev ineq:
Ay <o E [Egx (f, )]

<o '€q(f,f) (concave Diri. form)
@+ 0 Entl2] < a'm-Eo(f,f)
= p(Q) > a/m O
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Intuition and establishment of local functional inequalities
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Transport flows

Distributions: w and v over state space Q
Markov chain: Q over state space Q

Transport flow I' from p to v through Q is a distribution over all paths of the transition
graph of Q, such that fory ~ T

» its starting point s = s(y) follows the distribution n
» its end point t = t(y) follows the distribution v

a path in Q’s transition grap

~
S ~ -

forms a coupling € of wand v
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Local functional inequalities via transport flow

If there is a family of transport flows
{Te from p*Cto ' |e e E},

s.t. the k-(strong) expected congestion bound is satisfied: V transition (x — y) of Q,

D ke(0) E [(y) - 1lx = y) € ¥l < k- n(x)Qx,y),

ecE YNF&
then the a-local log-Sobolev inequality is satisfied
VE:Q 5 Ry, — Z Ent [E[F? | Xe]] < €q(f,f), with a=0Q——r],
eeE K Iog 3

where ¢ < min{ue(c) | € € E,c € {0, 1}} is the marginal lower bound.

Remark: it is safe to think ¢ ~ % in our application
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Proof outline: local functional inequalities via transport flow
@ Note that E [F? | X] is a function of Xe
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Proof outline: local functional inequalities via transport flow
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@ By log-Sobolev ineq. of pe by Diaconis and Saloff-Coste’96
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Proof outline: local functional inequalities via transport flow
@ Note that E [F? | Xc] is a function of X

@ By log-Sobolev ineq. of pe by Diaconis and Saloff-Coste’96

Ent [E [F2 | Xe]] <O (Iog (})) Var [\/E (F? | Xe}]

® Note that Q(ue) ={0,1}
2
Var /B 11| = 1l (VEF [Xe =01 ETF2 [ X = 1))

2
= He(T)1e(0) <\/ E [fZ(S(V))]—\/ E [fz(t(v))}>
Y~Te v~Te

@ Note that (x,y) — (vx — /y)? is convex on R?, by Jensen’s ineq. on R?

Ver |/E I 1] < e1)iel0) E, [1(50y) = ()

2
= pe(Npe(0) E [ > (f(x)—f(y))]
(

y~Te
x—y)EY
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Proof outline: local functional inequalities via transport flow
@ - © together:

2
1
Q (IOg]> Ent [E [F [ Xe]] < te(Tue(0) E [( > () —f(y))]

¢ x—Y)EY
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Proof outline: local functional inequalities via transport flow
@ - © together:

2
1
Q (IOg]> Ent [E [F [ Xe]] < te(Tue(0) E [( > () —f(y))]

b xX—Yy)EY

@® By Cauchy-Schwarz inequality

1
Q (Iog(})) Ent [E [F* | Xe]] < He(Die(0) B {ew) -( > (f(x)—f(y))2]

xX—Y)EY

= He(1)pe(0) Z YI@F [0(y) - 1(x = y) € Y]] (f(x) — f(y))?
(x—y) ¢
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Proof outline: local functional inequalities via transport flow
@ - © together:

2
1
Q (IOQD Ent [E [F [ Xe]] < te(Tue(0) E [( Y () —f(y))]

@ x—Y)EY

@® By Cauchy-Schwarz inequality

1
Q <|og1> Ent [E [F* | Xe]] < He(Die(0) B {ew) -( > (f(x)—f(y))2]

$ x—y)Ey

= He(1)pe(0) Z YI@F [0(y) - 1(x = y) € Y]] (f(x) — f(y))?
(x—y) ¢

® Take summation over e and compare with the Dirichlet form term by term

Eq(hf) =1 3 WXIQU YT — f(y))?
( )

Xy
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Local functional inequalities via transport flow
If there is a family of transport flows

{Te from p*Cto ' |e € E},

s.t. the k-(strong) expected congestion bound is satisfied: V transition (x — y) of Q,

D kel0 E [6(y)-1(x = y) e vl < k- n{x)Q(x,y),

~T.
ecE y ¢

then the x-local log-Sobolev inequality is satisfied

Vf:Q — Rso, ZEnt [FX]] <€qlf,f), with a=0(—2 ),
- eeE K|Og$

where ¢ < min{ue(c) | e € E,c €{0,1}} is the marginal lower bound.

There is a family of transport flows such that k = O(A?m) for Ps
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Construction of the transport flow Te: local-flip coupling

Local-flip coupling

Let X, Y be two random matchings generated as follow:

> sample X ~ u®<% and Z ~ u*! independently Fact
the difference between X and Z are paths and cycles > X~ peeo
» let D be the unique path/cycle that contains e > Y~ ]

> letY="7p U Xe\D

S S S
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Construction of the transport flow Te:

smallest vertex
|

!

JS’s canonical path

smallest endpoint
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Construction of the transport flow Ig

Construction of {T. | e € E}

> let X ~ u® % and Y ~ u®! be sampled from the local-flip coupling

> let y be the canonical path from X to Y, then Law(y) =T,
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Construction of the transport flow Te

Construction of {T. | e € E}

> let X ~ u® % and Y ~ u®! be sampled from the local-flip coupling

> let y be the canonical path from X to Y, then Law(y) =T,

Goal: V transition (o — B) of Pys,
>_#e(Oue(D) B [(y) - Tl(ec = B) € v)] < O(A7m) - w(e)Pus (e, B) %)
eckE ¢

Issue: it is hard to analysis multiple couplings together
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Construction of the transport flow Te

Construction of {T. | e € E}

> let X ~ u® % and Y ~ u®! be sampled from the local-flip coupling

> let y be the canonical path from X to Y, then Law(y) =T,

Goal: V transition (o — B) of Pys,

D e(Oue(1) E [e(y) - (= B) € Yl < O(A’m) - (e)Pys(x, B) %)
y~Te

eckE

Issue: it is hard to analysis multiple couplings together

e

€

h

h

local-flip coupling is highly symmetric

0 1 P = =
He (0) e ( )(X,Y§-Fe X=xY y]

un(Oun(1)  Pr X=xY=y
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Construction of the transport flow Te

Construction of {T. | e € E}

> let X ~ u® % and Y ~ u®! be sampled from the local-flip coupling

> lety be the canonical path from X to Y, then Law(y) =T.

Goal: V transition (o — B) of Pys,

> ue(O)ue(UYI?r [0(v) - T[(ex = B) €] < O(A*m) - u(x)Pys(, B) )
ecE ¢

Issue: it is hard to analysis multiple couplings together
Decoupling lemma
V transition (a+— B), if h € E st. an # Bn, then () holds if

in(O)un(1) E [IX @ YF - l(ex = B) € 1] < O(A2m) - (e)Pus(ox, B)

= 0(A%) - min{u(a), n(B)}
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Congestion analysis: a« @ p = {h} {1, T}-transitions

i (O (1) E [IX& Y - 1l(a— B) € 1] < O(4%) - min {u(e), 1(B))
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Congestion analysis: a« @ p = {h} {1, T}-transitions

i (O (1) E [IX& Y - 1l(a— B) € 1] < O(4%) - min {u(e), 1(B))

Observation: If o, =0and Br =1, then (a m B) ey &= Y=
i () (1) B X ® Y1211 = Bl| = wn (O)n (1) B [X @ Y |V = B| PriY =]

= un(O)(B) E [X @ Y*| Y = B]
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Congestion analysis: a« @ p = {h} {1, T}-transitions

pn(O)rn(1) E [IX@ Y- Tllow > B) € ¥1] < O(A?) - min {ix(a), w(B)}
Observation: If oy, =0and B =1, then (a = Bl ey = Y=p
un (O)pn (1) B [X@YE-T1Y = Bl = pn(Opn (N E X @ Y | Y = B PriY =]
= un(O)n(B) E [X @ VP | Y = B]

Lemma

YheE¥p>0, E[X&Y"|Y=p]=0,(4P)
h

Proved by a standard percolation analysis w.rt. local-flip coupling
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Congestion analysis: a« @ p = {h} {1, T}-transitions

i (O (1) E [IX& Y - 1l(a— B) € 1] < O(4%) - min {u(e), 1(B))

Observation: If oy, =0and B =1, then (a = Bl ey = Y=p
i () (1) B X ® Y1211 = Bl| = wn (O)n (1) B [X @ Y |V = B| PriY =]
= un(O)n(B) E [X @ VP | Y = B]
VheEVp >0, E [X®YP|Y=g] =0,(AP)
Proved by a standard percolation analysis w.rt. local-flip coupling

This implies
= un(O)un (1) E [IX® Y -10Y = BI| = 1un (0)u(B)O(A%) < O(A%) min{ys(ec), u(B))

The o, = 1, B = 0 case is symmetric 222



Congestion analysis: o @ B = {h, g} «—-transitions

(also works for cycles after some adjustment)
Q: how to understand («c— B) ey ? Jerrum-Sinclair'89 hints a change of variable
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g g9 g g
X o B Y
— h..”
g g
X:=YAD" Y:=YADY =aURB

23/26



Congestion analysis: o @ B = {h, g} «—-transitions

(also works for cycles after some adjustment)

Q: how to understand («c— B) ey ? Jerrum-Sinclair'89 hints a change of variable
heo " e h v h v
g g g g
X o B Y
— h..”

This means we can rewrite the expectation

E [X@YE- (o B) € V]

h
Q: how to understand the law of X and Y?

x@?yzwzcxum}

X:=YAD" Y:=YADY =aURB
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Congestion analysis: a« & B = {h, g}

(also works for cycles after some adjustment)

—-transitions

The following is new compare to Jerrum-Sinclair’s analysis

(>~(, \7) corresponds to matchings on G:

h*

? delete edges around w except h, g
and merge g, hinto a single edge

Lemma

(X,Y) = (X,Y)

(Y

is an injection
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Congestion analysis: « ® 3 = {h, g} —-transitions

(also works for cycles after some adjustment)
The following is new compare to Jerrum-Sinclair’s analysis

b " h "~ ~ ~ .
(X,Y) corresponds to matchings on G:
9 9 P e delete edges around w except h, g
and merge g, hinto a single edge
Lemma
(X,Y) = (X,Y)
G is an injection

X := YADWM Y:=YADY = U B
,/h* /h* [

= proj(X) Y == proj(Y)

>

24/26



Congestion analysis: « ® 3 = {h, g} —-transitions

(also works for cycles after some adjustment)
The following is new compare to Jerrum-Sinclair's analysis
he h % ~ - R
(X,Y) corresponds to matchings on G:

9 9 h delete edges around w except h, g
and merge g, hinto a single edge

Lemma
X,Y) = (X,Y)

G is an injection

= 9 fry

=YADI=aUR

X:=YAD"

h o transport flow T« for fi = ug satisfies
kn(O)un (1) Pr (X, V)]
h

= O((2/2)*)un+ (O)an+ (1) Pr [(R, V)]

s

<

i e 7 1 5 1
partition functions: Z = %) and Z = 15

= proj(X) Y == proj(Y)

>
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Congestion analysis: « ® 3 = {h, g} —-transitions

(also works for cycles after some adjustment)
This means we have

() (1) E EEAGRICTY Y]
i (O)un(1) E U%@?f A = aU m}

—O((2/2)%) i (O)in (1) E Ui@?\z [V = proj(aU )]
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Congestion analysis: « ® 3 = {h, g} —-transitions

(also works for cycles after some adjustment)
This means we have

pa (Opn (1) E X & Y- Tl(ac— B) € v]]
—un@un(1)E [[Re [ 1 = cup]
~O((2/2)) it Q)i (1) E Ui@ Y"1 = proj(acu p)

Similar to the case a ® B = {h}, we have

pn (O)n (1) B [IX@ Y- Tllow > B) € 1] = O((2/Z)?) - fn- (0)ft(proj o U B))A>
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Congestion analysis: « ® 3 = {h, g} —-transitions

(also works for cycles after some adjustment)
This means we have

pa (Opn (1) E X & Y- Tl(ac— B) € v]]
qmwmungﬂi@ﬂ31wzaum}
=0((2/2)?) - ftn+ (0)fin (1) fIE* Uf( o \?‘2 1Y = proj(aU )]
Similar to the case « & B = {h}, we have
pn (O)n (1) B [IX@ Y- Tllow > B) € 1] = O((2/Z)?) - fn- (0)ft(proj o U B))A>

Notethat Z =3 . AIMI < ¥ 1 .o AM =7, and

Alproj(aup)|

pn (O)un (1) E [IX & Y2 (e B) € v1] = 0(A2) = 0(A%) min {u(a), u(B)}
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Thank you

arXiv:2504.02740

Conclusion

Better bounds for Poincaré inequality and log-Sobolev inequality follows from

> low (one-sided) discrepancy coupling of p—® and ué<?b, ie.
small E[X@YP|Y=y] forsomep>0

» good construction of canonial paths
Future directions:

» Find more applications: e.g.
permanent, Ising model, switch/flip chain for sampling regular graphs
(note that it is acceptable that descrepancy = n¢ for some ¢ € (0, 1))

» The relationship between local functional inequalities with SI and EI?

» Exact mixing time bound for matchings: 6(A°m), c="7?
possible candidates: ¢ € {0,0.5,1, 2}
|
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