Faster Mixing of the Jerrum-Sinclair Chain

Xiaoyu Chen

Based on joint work with:

- Weiming feng
- ► Zhe Ju
- ▶ Tianshun Miao
- Yitong Yin
- Xinyuan Zhang

- @ HKU
- @ NJU
- @ NJU
- @ NJU
- @ NJU

Backgrouds and results

Approximate counting/sampling

Given a function wt : $\{0,1\}^n \to \mathbb{R}_{\geq 0}$:

exact counting

compute the partition function

$$Z := \sum_{x \in \{0,1\}^n} wt(x)$$

usually very hard

exact sampling

draw sample X from distribution

$$u := \frac{w u}{Z}$$

approximate counting

Find an estimation \widehat{Z} such that

$$(1-\varepsilon)Z \le \widehat{Z} \le (1+\varepsilon)Z$$

approximate sampling

draw a random $X \in \{0,1\}^n$ such that $\|\mu - \text{Law}(X)\|_{\text{TV}} \le \epsilon$

Examples including: (perfect) matchings, independent sets, spanning trees

Approximate counting/sampling

Given a function wt : $\{0,1\}^n \to \mathbb{R}_{\geq 0}$:

exact counting

compute the partition function

$$Z := \sum_{x \in \{0,1\}^n} wt(x)$$

usually very hard

exact sampling

draw sample X from distribution

$$\mu := \frac{\mathsf{Wt}}{\mathsf{Z}}$$

approximate counting

Find an estimation \widehat{Z} such that

$$(1 - \varepsilon)Z \le \widehat{Z} \le (1 + \varepsilon)Z$$

approximate sampling

draw a random $X \in \{0,1\}^n$ such that $\|\mu - \text{Law}(X)\|_{\text{TV}} \leq \varepsilon$

Examples including: (perfect) matchings, independent sets, spanning trees

Approximate counting/sampling

Given a function wt : $\{0,1\}^n \to \mathbb{R}_{\geq 0}$:

exact counting

compute the partition function

$$Z := \sum_{x \in \{0,1\}^n} wt(x)$$

usually very hard

exact sampling

draw sample X from distribution

$$\mu := \frac{wt}{Z}$$

approximate counting

Find an estimation \hat{Z} such that

$$(1-\varepsilon)Z \le \widehat{Z} \le (1+\varepsilon)Z$$

approximate sampling

draw a random $X \in \left\{0,1\right\}^n$ such that $\|\mu - \text{Law}(X)\|_{\text{TV}} \leq \epsilon$

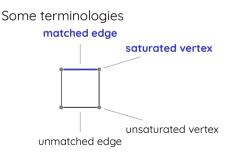
Examples including: (perfect) matchings, independent sets, spanning trees

Matchings (monomer-dimer model)

Let G = (V, E) be a simple graph and $\lambda > 0$ be the edge weight

- ▶ weight function: $\forall M \subseteq E$, $wt(M) := \lambda^{|M|} \mathbf{1}[M \text{ is a matching}]$
- ▶ partition function: $Z := \sum_{M} wt(M)$
- Gibbs distribition: $\mu := wt/Z$





Jerrum-Sinclar chain

The Jerrum-Sinclair chain P_{JS} updates a matching X_t to X_{t+1} as follow:

- 1. select $e = \{u, v\} \in E$, u.a.r.
- 2. propose a new matching M from following exclusive cases:
 - $(\uparrow) \ \ \text{if } \mathfrak{u} \ \text{and} \ \nu \ \text{are} \ \text{unsaturated, let} \ M \leftarrow X_t \cup \{e\}$
 - $(\downarrow) \text{ if } e \in X_t, \text{let } M \leftarrow X_t \setminus \{e\}$
 - $(\leftrightarrow) \ \text{if one end point is } \textbf{unsaturated} \ \text{and the other is } \textbf{saturated}, \\ \text{say } \mathfrak{u} \ \text{is saturated by edge } e' \ \text{and } \nu \ \text{is not, let} \ M \leftarrow X_t \setminus \{e'\} \cup \{e\}$
 - (\perp) otherwise, let $M \leftarrow X_t$
- 3. with probability $\min\{1, \mu(M)/\mu(X_t)\}$ set $X_{t+1} \leftarrow M$; otherwise, set $X_{t+1} \leftarrow X_t$

Lazy Jerrum-Sinclair chain^z

$$P_{zz} := \frac{1}{2} \left(P_{JS} + I \right)$$

MCMC method: run P_{zz} for t steps (sufficiently large); then output X_t

$$\text{Mixing time:} \quad T_{\text{mix}}(P_{zz}) := \max_{x} \min \left\{ t \left| \left\| P_{zz}^{t}(x, \cdot) - \mu \right\|_{\text{TV}} \leq \frac{1}{100} \right. \right\}$$

Jerrum-Sinclar chain

The Jerrum-Sinclair chain P_{JS} updates a matching X_t to X_{t+1} as follow:

- 1. select $e = \{u, v\} \in E$, u.a.r.
- 2. propose a new matching \boldsymbol{M} from following exclusive cases:
 - $(\uparrow) \ \ \text{if } \mathfrak{u} \ \text{and} \ \nu \ \text{are} \ \text{unsaturated, let} \ M \leftarrow X_t \cup \{e\}$
 - $(\downarrow) \text{ if } e \in X_t, \text{let } M \leftarrow X_t \setminus \{e\}$
 - (\leftrightarrow) if one end point is **unsaturated** and the other is **saturated**, say $\mathfrak u$ is saturated by edge e' and $\mathfrak v$ is **not**, let $M \leftarrow X_t \setminus \{e'\} \cup \{e\}$
 - $(\bot) \ \ \text{otherwise, let} \ M \leftarrow X_t$
- 3. with probability min $\{1, \mu(M)/\mu(X_t)\}$ set $X_{t+1} \leftarrow M$; otherwise, set $X_{t+1} \leftarrow X_t$

Lazy Jerrum-Sinclair chainz^z

$$P_{zz} := \tfrac{1}{2} \left(P_{JS} + I \right)$$

MCMC method: run P_{zz} for t steps (sufficiently large); then output X_t

$$\text{Mixing time:} \quad T_{\text{mix}}(P_{zz}) := \max_{x} \min \left\{ t \left\| \left\| P_{zz}^{t}(x,\cdot) - \mu \right\|_{\text{TV}} \leq \frac{1}{100} \right. \right\}$$

Jerrum-Sinclar chain

The Jerrum-Sinclair chain P_{JS} updates a matching X_t to X_{t+1} as follow:

- 1. select $e = \{u, v\} \in E$, u.a.r.
- 2. propose a new matching \boldsymbol{M} from following exclusive cases:
 - $(\uparrow) \ \ \text{if } \mathfrak{u} \ \text{and} \ \nu \ \text{are} \ \text{\textbf{unsaturated}}, \text{let} \ M \leftarrow X_t \cup \{e\}$
 - (\downarrow) if $e \in X_t$, let $M \leftarrow X_t \setminus \{e\}$
 - (\leftrightarrow) if one end point is **unsaturated** and the other is **saturated**, say $\mathfrak u$ is saturated by edge e' and $\mathfrak v$ is **not**, let $M \leftarrow X_t \setminus \{e'\} \cup \{e\}$
 - (\perp) otherwise, let $M \leftarrow X_t$
- 3. with probability min $\{1, \mu(M)/\mu(X_t)\}$ set $X_{t+1} \leftarrow M$; otherwise, set $X_{t+1} \leftarrow X_t$

Lazy Jerrum-Sinclair chain z^{z^2}

$$P_{zz} := \frac{1}{2} \left(P_{JS} + I \right)$$

MCMC method: run P_{zz} for t steps (sufficiently large); then output X_t

$$\text{Mixing time:} \quad T_{\text{mix}}(P_{zz}) := \max_{x} \min \left\{ t \left\| \left\| P_{zz}^{t}(x,\cdot) - \mu \right\|_{\text{TV}} \leq \frac{1}{100} \right. \right\}$$

$$(n = |V|, m = |E|)$$

Jerrum-Sinclair'89: General graph; constant $\lambda > 0$,

$$T_{mix}(P_{zz}) = \widetilde{O}(n^2 \cdot m)$$

(via canonical path)

|Chen-Liu-Vigoda'21: Graph with max degree Δ ; constant $\lambda > 0$

$$T_{mix}(Glauber\ dynamics) = O(\Delta^{\Delta^2} m \log n)$$
(strong spatial mixing + spectral independence)

Glauber dynamics $pprox P_{zz}$ only allows (\downarrow) and (\uparrow) transitions

C-Yang-Yin-Zhang'24: Graph max degree Δ and girth $=\Omega(\sqrt{\Delta}\log\Delta)$; constant $\lambda>0$

$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^c \cdot n \cdot m), \text{ for some universal constant } c$$
 (approximate inversion + spectral independence)

C-Chen-Chen-Yin-Zhang'25 (concurrent work): General graph; $0 < \lambda \le 1$

$$T_{mix}(Glauber\ dynamics) = O(\sqrt{\Delta \cdot n \cdot m})$$
 (field dynamics trickle down + spectral independence)

$$(n = |V|, m = |E|)$$

Jerrum-Sinclair'89: General graph; constant $\lambda > 0$,

$$T_{mix}(P_{zz}) = \widetilde{O}(n^2 \cdot m)$$

(via canonical path)

Chen-Liu-Vigoda'21: Graph with max degree Δ ; constant $\lambda > 0$

$$\begin{split} T_{\text{mix}}(\text{Glauber dynamics}) &= O(\Delta^{\Delta^2} \mathfrak{m} \log \mathfrak{n}) \\ & \text{(strong spatial mixing} + \text{spectral independence)} \end{split}$$

Glauber dynamics $\approx P_{zz}$ only allows (\downarrow) and (\uparrow) transitions

C-Yang-Yin-Zhang'24: Graph max degree Δ and girth $= \Omega(\sqrt{\Delta} \log \Delta)$; constant $\lambda > 0$

 $T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^c \cdot n \cdot m), \text{ for some universal constant } c$ (approximate inversion + spectral independence)

C-Chen-Chen-Yin-Zhang'25 (concurrent work): General graph; $0 < \lambda \le 1$

$$T_{mix}(Glauber\ dynamics) = \widetilde{O}(\sqrt{\Delta} \cdot n \cdot m)$$
(field dynamics trickle down + spectral independence)

$$(n = |V|, m = |E|)$$

Jerrum-Sinclair'89: General graph; constant $\lambda > 0$,

$$T_{mix}(P_{zz}) = \widetilde{O}(n^2 \cdot m)$$

(via canonical path)

Chen-Liu-Vigoda'21: Graph with max degree Δ ; constant $\lambda > 0$

$$\begin{split} T_{\text{mix}}(\text{Glauber dynamics}) &= O(\Delta^{\Delta^2} \mathfrak{m} \log \mathfrak{n}) \\ & \text{(strong spatial mixing} + \text{spectral independence)} \end{split}$$

Glauber dynamics $\approx P_{zz}$ only allows (\downarrow) and (\uparrow) transitions

C-Yang-Yin-Zhang'24: Graph max degree Δ and girth $=\Omega(\sqrt{\Delta}\log\Delta)$; constant $\lambda>0$

$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^c \cdot n \cdot m), \text{ for some universal constant } c$$

$$(\text{approximate inversion + spectral independence})$$

C-Chen-Chen-Yin-Zhang'25 (concurrent work): General graph; 0 < λ \leq 1

$$T_{mix}(Glauber dynamics) = \widetilde{O}(\sqrt{\Delta} \cdot n \cdot m)$$
 (field dynamics trickle down + spectral independence)

$$(n = |V|, m = |E|)$$

Jerrum-Sinclair'89: General graph; constant $\lambda > 0$,

$$T_{\text{mix}}(P_{zz}) = \widetilde{O}(\mathfrak{n}^2 \cdot \mathfrak{m}) \tag{via canonical path)}$$

Chen-Liu-Vigoda'21: Graph with max degree Δ ; constant $\lambda > 0$

$$\begin{split} T_{\text{mix}}(\text{Glauber dynamics}) &= O(\Delta^{\Delta^2} \mathfrak{m} \log \mathfrak{n}) \\ & \text{(strong spatial mixing} + \text{spectral independence)} \end{split}$$

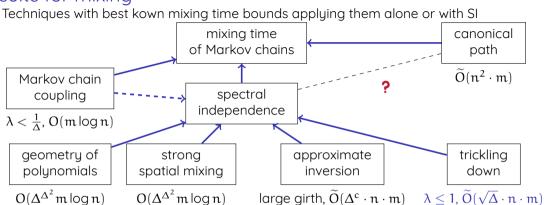
Glauber dynamics $\approx P_{zz}$ only allows (\downarrow) and (\uparrow) transitions

C-Yang-Yin-Zhang'24: Graph max degree Δ and girth $=\Omega(\sqrt{\Delta}\log\Delta)$; constant $\lambda>0$

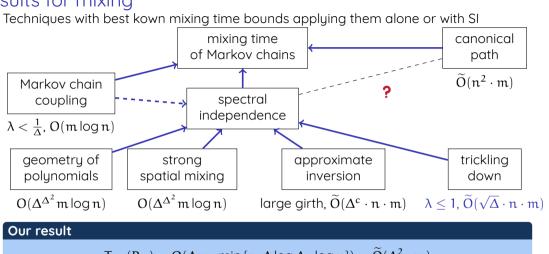
$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^c \cdot n \cdot m), \text{ for some universal constant } c$$
 (approximate inversion + spectral independence)

C-Chen-Chen-Yin-Zhang'25 (concurrent work): General graph; $0 < \lambda \le 1$

$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\sqrt{\Delta} \cdot n \cdot m)$$
 (field dynamics trickle down + spectral independence)



Our result
$$T_{\text{mix}}(P_{zz}) = O(\Delta \mathfrak{m} \cdot \text{min} \{\mathfrak{n}, \Delta \log \Delta \cdot \log \mathfrak{n}\}) = \widetilde{O}(\Delta^2 \cdot \mathfrak{m})$$
 Corollary:
$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^3 \cdot \mathfrak{m})$$



$$T_{\text{mix}}(P_{zz}) = O(\Delta \mathfrak{m} \cdot \min\{\mathfrak{n}, \Delta \log \Delta \cdot \log \mathfrak{n}\}) = \widetilde{O}(\Delta^2 \cdot \mathfrak{m})$$
 Corollary:
$$T_{\text{mix}}(\text{Glauber dynamics}) = \widetilde{O}(\Delta^3 \cdot \mathfrak{m})$$

Mixing time analysis via local functional inequalities

Distribution μ over $\Omega \subseteq 2^E$

Random variable F=f(X) for $f:\Omega\to\mathbb{R}_{\geq 0}$ and $X\sim\mu$

entropy

$$\mathsf{Ent}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}(\mathsf{log}\,\mathsf{F} - \mathsf{log}\,\mathbb{E}\left[\mathsf{F}\right])\right]$$

variance

$$Var[F] := \mathbb{E}[F^2] - \mathbb{E}[F]$$

Inner product for functions $f,g:\Omega\to\mathbb{R}_{\geq 0}$: $\langle f,g\rangle_{\mu}:=\mathbb{E}\left[f(X)g(X)\right]$ Dirichlet form Markov chain P with stationary distribution μ

$$\mathcal{E}_{P}(f,f) := \langle f, (I-P)f \rangle_{\mu} = \frac{1}{2} \sum_{x,y \in \Omega} \mu(x) P(x,y) (f(x) - f(y))^{2}$$

for reversible chains

log-Sobolev inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \rho(P) \cdot \mathsf{Ent}[F^2] \leq \mathcal{E}_P(f, f)$$

$$T_{mix}(P_{zz}) = \rho(P_{JS})^{-1} \times O(\log n)$$

Poincaré inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \gamma(P) \cdot \mathsf{Var}\left[F\right] \leq \mathcal{E}_{P}(f,f)$$

$$T_{\text{mix}}(P_{zz}) = \gamma(P_{JS})^{-1} \times O(n)$$

O(
$$\Delta$$
m)

Distribution μ over $\Omega \subseteq 2^E$

Random variable F=f(X) for $f:\Omega\to\mathbb{R}_{\geq 0}$ and $X\sim\mu$

entropy

$$\mathsf{Ent}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}(\mathsf{log}\,\mathsf{F} - \mathsf{log}\,\mathbb{E}\left[\mathsf{F}\right])\right]$$

variance

$$\mathsf{Var}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}^2\right] - \mathbb{E}\left[\mathsf{F}\right]^2$$

Inner product for functions $f,g:\Omega\to\mathbb{R}_{\geq 0}$: $\langle f,g\rangle_{\mu}:=\mathbb{E}\left[f(X)g(X)\right]$ Dirichlet form Markov chain P with stationary distribution μ

$$\mathcal{E}_{P}(f,f) := \langle f, (I-P)f \rangle_{\mu} = \frac{1}{2} \sum_{x,y \in \Omega} \mu(x) P(x,y) (f(x) - f(y))^{2}$$

for reversible chains

log-Sobolev inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \rho(P) \cdot \mathsf{Ent}[F^2] \leq \epsilon_P(f,f)$$

$$T_{mix}(P_{zz}) = \rho(P_{JS})^{-1} \times O(\log n)$$

Poincaré inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \gamma(P) \cdot \mathsf{Var}\left[F\right] \leq \mathcal{E}_{P}(f,f)$$

$$T_{\text{mix}}(P_{zz}) = \gamma(P_{JS})^{-1} \times O(n)$$

O(Δm

Distribution μ over $\Omega \subseteq 2^E$

Random variable F=f(X) for $f:\Omega\to\mathbb{R}_{\geq 0}$ and $X\sim \mu$

entropy

 $\mathsf{Ent}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}(\mathsf{log}\,\mathsf{F} - \mathsf{log}\,\mathbb{E}\left[\mathsf{F}\right])\right]$

variance

$$\operatorname{Var}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}^2\right] - \mathbb{E}\left[\mathsf{F}\right]^2$$

Inner product for functions $f, g: \Omega \to \mathbb{R}_{\geq 0}$: $\langle f, g \rangle_{\mathfrak{u}} := \mathbb{E}\left[f(X)g(X)\right]$

Dirichlet form Markov chain P with stationary distribution μ

$$\mathcal{E}_{P}(f,f) := \langle f, (I-P)f \rangle_{\mu} = \frac{1}{2} \sum_{x,y \in \Omega} \mu(x) P(x,y) (f(x) - f(y))^{2}$$

for reversible chains

log-Sobolev inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \rho(P) \cdot \mathsf{Ent}[F^2] \leq \epsilon_P(f,f)$$

$$T_{mix}(P_{zz}) = \rho(P_{JS})^{-1} \times O(\log n)$$

Poincaré inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \gamma(P) \cdot \mathsf{Var}\left[F\right] \leq \mathcal{E}_{P}(f,f)$$

$$T_{\text{mix}}(P_{zz}) = \gamma(P_{JS})^{-1} \times O(\mathfrak{n})$$

 $O(\Delta m)$

Distribution μ over $\Omega \subseteq 2^E$

Random variable F = f(X) for $f : \Omega \to \mathbb{R}_{>0}$ and $X \sim \mu$

entropy

 $\mathsf{Ent}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}(\mathsf{log}\,\mathsf{F} - \mathsf{log}\,\mathbb{E}\left[\mathsf{F}\right])\right]$

variance

$$\operatorname{Var}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}^2\right] - \mathbb{E}\left[\mathsf{F}\right]^2$$

Inner product for functions $f,g:\Omega\to\mathbb{R}_{\geq 0}$: $\langle f,g\rangle_{\mu}:=\mathbb{E}\left[f(X)g(X)\right]$ Dirichlet form Markov chain P with stationary distribution μ

$$\mathcal{E}_{P}(f,f) := \langle f, (I-P)f \rangle_{\mu} = \frac{1}{2} \sum_{x,y \in \Omega} \mu(x) P(x,y) (f(x) - f(y))^{2}$$

for reversible chains

log-Sobolev inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \rho(P) \cdot \text{Ent}[F^2] \leq \epsilon_P(f,f)$$

$$T_{mix}(P_{zz}) = \rho(P_{JS})^{-1} \times O(\log n)$$

Poincaré inequality

$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \gamma(P) \cdot \mathsf{Var}\left[F\right] \leq \mathcal{E}_{P}(f,f)$$

$$T_{\text{mix}}(P_{zz}) = \gamma(P_{JS})^{-1} \times O(n)$$

 $O(\Delta m)$

Distribution μ over $\Omega \subseteq 2^E$

Random variable F = f(X) for $f : \Omega \to \mathbb{R}_{>0}$ and $X \sim \mu$

entropy

 $\mathsf{Ent}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}(\mathsf{log}\,\mathsf{F} - \mathsf{log}\,\mathbb{E}\left[\mathsf{F}\right])\right]$

variance

$$\mathsf{Var}\left[\mathsf{F}\right] := \mathbb{E}\left[\mathsf{F}^2\right] - \mathbb{E}\left[\mathsf{F}\right]^2$$

Inner product for functions $f,g:\Omega\to\mathbb{R}_{\geq 0}$: $\langle f,g\rangle_{\mu}:=\mathbb{E}\left[f(X)g(X)\right]$ Dirichlet form Markov chain P with stationary distribution μ

$$\mathcal{E}_{P}(f,f) := \langle f, (I-P)f \rangle_{\mu} = \frac{1}{2} \sum_{x,y \in \Omega} \mu(x) P(x,y) (f(x) - f(y))^{2}$$

for reversible chains

log-Sobolev inequality

$$\forall f \in \mathbb{R}^{\Omega}_{>0}, \quad \rho(P) \cdot \mathsf{Ent}[F^2] \leq \mathcal{E}_{P}(f, f)$$

$$T_{\text{mix}}(P_{zz}) = \rho(P_{JS})^{-1} \times O(\log n)$$

Poincaré inequality

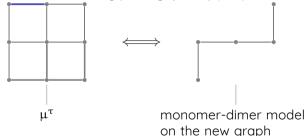
$$\forall f \in \mathbb{R}^{\Omega}_{\geq 0}, \quad \gamma(P) \cdot \mathsf{Var}\left[F\right] \leq \mathcal{E}_{P}(f,f)$$

$$T_{\text{mix}}(P_{zz}) = \gamma(P_{\text{JS}})^{-1} \times O(n)$$

Pinnings

Pinning: τ is a 0-1 vector in $\{0,1\}^{\Lambda}$ ($\Lambda\subseteq E$) which indicates an event that $\forall e\in \Lambda, \quad \begin{cases} e \text{ is } \textbf{matched}, & \tau_e=1\\ e \text{ is } \textbf{unmatched}, & \tau_e=0 \end{cases}$ Feasible pinning: if $M(\tau):=\{e\in \Lambda\mid \tau_e=1\}$ is a matching

Conditional distributions induced by pinning: $\mu^{\tau} := \mu(\cdot \mid \tau)$



In particular, $\mu^{\varnothing} = \mu$

Local functional inequalities

Family of chains:

$$\mathfrak{Q} \coloneqq \left\{ Q^\tau \,\middle|\, \begin{array}{c} \tau \text{ is a feasible pinning} \\ Q^\tau \text{ has stationary distribution } \mu^\tau \end{array} \right\}$$

Concave Dirichlet forms
$$\forall \Lambda \subseteq E, \forall \tau \in \{0,1\}^{E \setminus \Lambda}$$
, we have
$$\frac{1}{|\Lambda|} \sum_{c \sim \mu_{\tau}^{T}} \left[\mathcal{E}_{Q^{\tau \uplus \{e \leftarrow c\}}}(f,f) \right] \leq \mathcal{E}_{Q^{\tau}}(f,f)$$

$$\forall f, \quad \frac{\alpha}{|\Lambda|} \sum_{e \in \Lambda} \operatorname{Ent} \left[\mathbb{E} \left[F^2 \mid X_e \right] \right] \leq \mathcal{E}_{Q^\tau}(f,f)$$

local-to-global: +
$$\bigstar \Longrightarrow \rho(Q) \ge \frac{\alpha}{m}$$

$$\forall f, \quad \frac{\alpha}{|\Lambda|} \sum_{e \in \Lambda} \mathsf{Var}\left[\mathbb{E}\left[F \mid X_e\right]\right] \leq \epsilon_{Q^\pi}(f,f)$$

local-to-global:
$$+$$
 $\Longrightarrow \gamma(Q) \ge \frac{\alpha}{m}$

Local functional inequalities

Family of chains:

$$\mathfrak{Q} \coloneqq \left\{ Q^\tau \,\middle|\, \begin{array}{c} \tau \text{ is a feasible pinning} \\ Q^\tau \text{ has stationary distribution } \mu^\tau \end{array} \right\}$$

Concave Dirichlet forms \blacksquare : $\forall \Lambda \subseteq E, \forall \tau \in \{0,1\}^{E \setminus \Lambda}$, we have

$$\underbrace{\frac{1}{|\Lambda|} \sum_{e \in \Lambda} \mathop{\mathbb{E}}_{c \sim \mu_e^\tau} \left[\mathcal{E}_{Q^{\tau \uplus \{e \leftarrow c\}}}(f, f) \right]}_{} \leq \mathcal{E}_{Q^\tau}(f, f)$$

average of Dirichlet forms

Pinning $\tau \uplus \{e \leftarrow c\}$ extends τ by giving a random edge e a random state c

Local functional inequalities: $\forall \Lambda \subseteq E, \forall \tau \in \{0,1\}^{E \setminus \Lambda}$, let $X \sim \mu^{\tau}$ and F = f(X),

$$\begin{split} & \text{α-local log-Sobolev inequalities} \\ & \forall f, \quad \frac{\alpha}{|\Lambda|} \sum_{e \in \Lambda} \mathsf{Ent}\left[\mathbb{E}\left[\mathsf{F}^2 \mid X_e\right]\right] \leq \mathcal{E}_{Q^\tau}(f,f) \\ & \mathsf{local-to-global:} + \bigstar \Longrightarrow \rho(Q) \geq \frac{\alpha}{m} \end{split}$$

$$\begin{array}{l} \alpha\text{-local Poincar\'e inequalities} \\ \forall f, \quad \frac{\alpha}{|\Lambda|} \sum_{e \in \Lambda} \text{Var} \left[\mathbb{E} \left[F \, | \, X_e \right] \right] \leq \mathcal{E}_{Q^\pi}(f,f) \\ \\ \text{local-to-global:} + \bigstar \Longrightarrow \gamma(Q) \geq \frac{\alpha}{m} \end{array}$$

Local functional inequalities

Family of chains:

$$\mathfrak{Q} \coloneqq \left\{ Q^\tau \,\middle|\, \begin{array}{c} \tau \text{ is a feasible pinning} \\ Q^\tau \text{ has stationary distribution } \mu^\tau \end{array} \right\}$$

Concave Dirichlet forms \ref{start} : $\forall \Lambda \subseteq E, \forall \tau \in \{0,1\}^{E \setminus \Lambda}$, we have

$$\frac{1}{|\Lambda|} \sum_{e \in \Lambda} \underset{c \sim \mu_e^\tau}{\mathbb{E}} \left[\epsilon_{Q^{\tau \uplus \{e \leftarrow c\}}}(f,f) \right] \leq \epsilon_{Q^\tau}(f,f)$$

average of Dirichlet forms

Pinning $\tau \uplus \{e \leftarrow c\}$ extends τ by giving a random edge e a random state c

Local functional inequalities: $\forall \Lambda \subseteq E, \forall \tau \in \{0,1\}^{E \setminus \Lambda}$, let $X \sim \mu^{\tau}$ and F = f(X),

α -local log-Sobolev inequalities

$$\forall f, \quad \frac{\alpha}{|\Lambda|} \sum_{e \in \Lambda} \mathsf{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mathcal{E}_{Q^\tau}(f, f)$$

local-to-global:
$$+ * \Longrightarrow \rho(Q) \ge \frac{\alpha}{m}$$

α -local Poincaré inequalities

$$\forall \mathsf{f}, \quad \frac{\alpha}{|\Lambda|} \sum_{\mathsf{e} \in \Lambda} \mathsf{Var} \left[\mathbb{E} \left[\mathsf{F} \mid \mathsf{X}_{\mathsf{e}} \right] \right] \leq \mathcal{E}_{\mathsf{Q}^{\pi}}(\mathsf{f}, \mathsf{f})$$

local-to-global:
$$+ * \Longrightarrow \gamma(Q) \ge \frac{\alpha}{m}$$

everything works if $\text{Ent}[\cdot] \to \text{Var}[\cdot]$ and $F^2 \to F$

Let $(X_t)_{t=0}^m$ be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0, 1\}^{E \setminus \Lambda}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r
 - 2.2 draw $c \sim \mu_e^{X_t}$
 - 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_{\mathfrak{m}} \sim \mu$

Goal: fix $f:\Omega\to\mathbb{R}_{\geq 0}$, let $F=f(X_{\mathfrak{m}})$, show

$$\mathsf{Ent}[\mathsf{F}^2] \leq \rho(Q)^{-1} \mathcal{E}_Q(\mathsf{f},\mathsf{f})$$

- - ightharpoonup Ent(0) = Ent[F²]
 - ightharpoonup Ent(m) = 0

7 Telescoping sum: $\operatorname{Ent}[F^2] = \operatorname{Ent}(0) - \operatorname{Ent}(\mathfrak{m})$ $= \sum_{t=0}^{\mathfrak{m}-1} \underbrace{\left(\operatorname{Ent}(t) - \operatorname{Ent}(t+1)\right)}_{\bullet}$

Compare the second of the s

$$\begin{split} \triangle_{\mathbf{t}} &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}}]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}}] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}] \mid X_{\mathbf{t}}\right]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathbb{E}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}] \mid X_{\mathbf{t}}]\right] \end{split}$$

4) α -local log-Sobolev ineq.: $\triangle_{t} \leq \alpha^{-1} \mathbb{E} \left[\mathcal{E}_{Q} x_{t} \left(f, f \right) \right]$

$$\leq \alpha^{-1} \mathcal{E}_{Q}(f, f)$$
 (concave Diri. form)

 $2 + 4 \cdot \text{Ent}[1] \le \alpha \cdot \text{In} \cdot \text{CQ}(1,1)$

everything works if $\operatorname{Ent}[\cdot] \to \operatorname{Var}[\cdot]$ and $\operatorname{F}^2 \to \operatorname{F}$

Let
$$(X_t)_{t=0}^m$$
 be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0, 1\}^{E \setminus \Lambda}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r
 - 2.2 draw $c \sim \mu_e^{X_t}$ 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_m \sim \mu$

Goal: fix $f:\Omega \to \mathbb{R}_{\geq 0}$, let $F=f(X_{\mathfrak{m}})$, show

$$\mathsf{Ent}[\mathsf{F}^2] \le \rho(Q)^{-1} \mathcal{E}_Q(\mathsf{f},\mathsf{f})$$

- - $\blacktriangleright \operatorname{Ent}(0) = \operatorname{Ent}[\mathsf{F}^2]$
 - ightharpoonup Ent(m) = 0

2 Telescoping sum:

$$Ent[F^2] = Ent(0) - Ent(m)$$

$$= \sum_{t=0}^{m-1} \underbrace{(Ent(t) - Ent(t+1))}_{t=0}$$

Compare the second s

$$\begin{split} \triangle_{t} &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t}]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t}] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}] \mid X_{t}\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathbb{E}[\mathsf{F}^2 \mid X_{t+1}] \mid X_{t}]\right] \end{split}$$

 α -local log-Sobolev ineq.: $\Delta_t \leq \alpha^{-1} \mathbb{E} \left[\mathcal{E}_{\Omega^{X_t}}(f, f) \right]$

$$\leq \alpha^{-1} \mathcal{E}_Q(f,f) \quad \text{(concave Diri. form)}$$

 $2 + 4 : \operatorname{Ent}[F^2] \le \alpha^{-1} \mathfrak{m} \cdot \mathcal{E}_{Q}(f, f)$

$$\Longrightarrow \rho(Q) \geq \alpha/m$$

everything works if $\text{Ent}[\cdot] \to \text{Var}[\cdot]$ and $F^2 \to F$

Let $(X_t)_{t=0}^m$ be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0, 1\}^{E \setminus \Lambda}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r
 - 2.2 draw $c \sim \mu_e^{X_t}$
 - 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_{\mathfrak{m}} \sim \mu$

Goal: fix $f:\Omega\to\mathbb{R}_{\geq 0}$, let $F=f(X_{\mathfrak{m}})$, show

$$\mathsf{Ent}[\mathsf{F}^2] \leq \rho(Q)^{-1} \mathcal{E}_Q(\mathsf{f},\mathsf{f})$$

- - $\blacktriangleright \operatorname{Ent}(0) = \operatorname{Ent}[\mathsf{F}^2]$
 - ightharpoonup Ent(m) = 0

2 Telescoping sum: $\operatorname{Ent}[F^2] = \operatorname{Ent}(0) - \operatorname{Ent}(\mathfrak{m})$ $= \sum_{t=0}^{m-1} \underbrace{\left(\operatorname{Ent}(t) - \operatorname{Ent}(t+1)\right)}_{=:\Delta_t}$

3 Law of total ent.:

$$\begin{split} \widetilde{\triangle}_t &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}] \mid X_t\right] \right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathbb{E}[\mathsf{F}^2 \mid X_{t+1}] \mid X_t\right] \end{split}$$

 $\begin{array}{l} \textbf{α-local log-Sobolev ineq.:} \\ \triangle_t \leq \alpha^{-1} \, \mathbb{E} \left[\mathcal{E}_{Q^{\times_t}}(f,f) \right] \end{array}$

$$\leq \alpha$$
 (Concave Diri. form

 $\Longrightarrow \rho(Q) \ge \alpha/m$

everything works if $\text{Ent}[\cdot] \to \text{Var}[\cdot]$ and $F^2 \to F$

Let $(X_t)_{t=0}^m$ be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0, 1\}^{E \setminus A}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r
 - 2.2 draw $c \sim \mu_e^{X_t}$
 - 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_{\mathfrak{m}} \sim \mu$

Goal: fix $f:\Omega\to\mathbb{R}_{\geq 0}$, let $F=f(X_{\mathfrak{m}})$, show

$$\mathsf{Ent}[\mathsf{F}^2] \leq \rho(Q)^{-1} \mathcal{E}_Q(\mathsf{f},\mathsf{f})$$

- $\textbf{1} \ \, \mathsf{Define:} \ \, \mathsf{Ent}(\mathsf{t}) := \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid \mathsf{X}_\mathsf{t}]\right]$
 - $\blacktriangleright \operatorname{Ent}(0) = \operatorname{Ent}[\mathsf{F}^2]$
 - ightharpoonup Ent(m) = 0

2 Telescoping sum: $Ent[F^2] = Ent(0) - Ent(m)$ $= \sum_{t=0}^{m-1} \underbrace{(Ent(t) - Ent(t+1))}_{=:\Delta_t}$

3 Law of total ent.:

$$\begin{split} \widetilde{\triangle}_t &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}] \mid X_t\right]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathbb{E}[\mathsf{F}^2 \mid X_{t+1}] \mid X_t]\right] \end{split}$$

4) α -local log-Sobolev ineq.: $\triangle_{t} \leq \alpha^{-1} \mathbb{E} \left[\mathcal{E}_{Q^{X_{t}}}(f, f) \right]$ $\leq \alpha^{-1} \mathcal{E}_{Q}(f, f)$ (concave Diri

 $\Longrightarrow \rho(Q) \ge \alpha/m$

everything works if $\text{Ent}[\cdot] \to \text{Var}[\cdot]$ and $F^2 \to F$

Let $(X_t)_{t=0}^m$ be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0, 1\}^{E \setminus A}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r
 - 2.2 draw $c \sim \mu_e^{X_t}$
 - 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_{\mathfrak{m}} \sim \mu$

Goal: fix $f:\Omega\to\mathbb{R}_{\geq 0}$, let $F=f(X_{\mathfrak{m}})$, show

$$\mathsf{Ent}[F^2] \leq \rho(Q)^{-1} \mathcal{E}_Q(f,f)$$

- $\textbf{1} \ \, \mathsf{Define} \colon \mathsf{Ent}(\mathsf{t}) := \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_\mathsf{t}]\right]$
 - ightharpoonup Ent(0) = Ent[F²]
 - ightharpoonup Ent(m) = 0

2 Telescoping sum: $Ent[F^2] = Ent(0) - Ent(m)$ $= \sum_{t=0}^{m-1} \underbrace{(Ent(t) - Ent(t+1))}_{=:\Delta_t}$

3 Law of total ent.:

$$\begin{split} \triangle_{\mathbf{t}} &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}}]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}}] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}] \mid X_{\mathbf{t}}\right]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathbb{E}[\mathsf{F}^2 \mid X_{\mathbf{t}+1}] \mid X_{\mathbf{t}}]\right] \end{split}$$

4 α -local log-Sobolev ineq.: $\Delta_{t} \leq \alpha^{-1} \mathbb{E} \left[\mathcal{E}_{\Omega^{X_{t}}}(f, f) \right]$

$$\leq \alpha^{-1} \mathcal{E}_{\Omega}(f, f)$$
 (concave Diri. form)

 $2 + 4 : \operatorname{Ent}[F^2] \le \alpha^{-1} \mathfrak{m} \cdot \mathcal{E}_{\mathbb{Q}}(f, f)$

 $\Longrightarrow \rho(Q) \ge \alpha/m$

everything works if $\operatorname{Ent}[\cdot] \to \operatorname{Var}[\cdot]$ and $F^2 \to F$

Let $(X_t)_{t=0}^m$ be a Markov chain s.t.

- 1. $X_0 = \emptyset$
- 2. given $X_t \in \{0,1\}^{E \setminus A}$, get X_{t+1} by
 - 2.1 draw $e \in \Lambda$ u.a.r 2.2 draw $e \sim \mu_e^{X_t}$
 - 2.3 let $X_{t+1} \leftarrow X_t \uplus \{e \leftarrow c\}$

Observation: $X_m \sim \mu$ Goal: fix $f: \Omega \to \mathbb{R}_{>0}$, let $F = f(X_m)$, show

$$\mathsf{Ent}[\mathsf{F}^2] \leq \rho(Q)^{-1} \mathcal{E}_Q(\mathsf{f},\mathsf{f})$$

- - $\blacktriangleright \operatorname{Ent}(0) = \operatorname{Ent}[\mathsf{F}^2]$
 - ightharpoonup Ent(m) = 0

2 Telescoping sum:

$$\mathsf{Ent}[\mathsf{F}^2] = \mathsf{Ent}(\mathsf{0}) - \mathsf{Ent}(\mathsf{m})$$

$$= \sum_{\mathsf{t}=\mathsf{0}}^{\mathsf{m}-\mathsf{1}} \underbrace{(\mathsf{Ent}(\mathsf{t}) - \mathsf{Ent}(\mathsf{t}+\mathsf{1}))}_{=:\triangle_\mathsf{t}}$$

S Law of total ent.:

$$\begin{split} \widetilde{\triangle}_t &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t]\right] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}]\right] \\ &= \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_t] - \mathbb{E}\left[\mathsf{Ent}[\mathsf{F}^2 \mid X_{t+1}] \mid X_t\right]\right] \end{split}$$

$$\triangle_{\mathbf{t}} \leq \alpha^{-1} \mathbb{E} \left[\mathcal{E}_{\mathbf{Q}^{\mathbf{X}_{\mathbf{t}}}}(\mathbf{f}, \mathbf{f}) \right]$$

 $\leq \alpha^{-1} \mathcal{E}_{\mathbf{Q}}(\mathbf{f}, \mathbf{f})$ (concave Diri. form)

2 + **4**:
$$Ent[F^2] \le \alpha^{-1}m \cdot \mathcal{E}_{O}(f, f)$$

$$\Longrightarrow \rho(Q) \ge \alpha/\mathfrak{m}$$

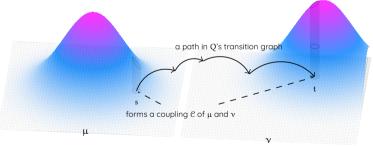
Intuition and establishment of local functional inequalities

Transport flows

Distributions: μ and ν over state space Ω Markov chain: Q over state space Ω

Transport flow Γ from μ to ν through Q is a distribution over all paths of the transition graph of Q, such that for $\gamma \sim \Gamma$:

- its starting point $s = s(\gamma)$ follows the distribution μ
- its end point $t = t(\gamma)$ follows the distribution ν



Local functional inequalities via transport flow

Theorem

If there is a family of transport flows

$$\{\Gamma_e \text{ from } \mu^{e \leftarrow 0} \text{ to } \mu^{e \leftarrow 1} \mid e \in E\},$$

s.t. the κ -(strong) expected congestion bound is satisfied: \forall transition $(x \mapsto y)$ of Q,

$$\sum_{e\in F} \mu_e(0)\mu_e(1) \mathop{\mathbb{E}}_{\gamma\sim \Gamma_e} \left[\ell(\gamma)\cdot \mathbf{1}[(x\mapsto y)\in \gamma]\right] \leq \kappa\cdot \mu(x)Q(x,y),$$

then the α -local log-Sobolev inequality is satisfied

$$\forall f: \Omega \to \mathbb{R}_{\geq 0}, \quad \frac{\alpha}{m} \sum_{e \in E} \mathsf{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mathcal{E}_Q(f,f), \quad \mathsf{with} \quad \alpha = \Omega\left(\frac{m}{\kappa \log \frac{1}{\varphi}}\right),$$

where $\phi \leq \min \{ \mu_e(c) \mid e \in E, c \in \{0,1\} \}$ is the marginal lower bound.

Remark: it is safe to think $\phi \approx \frac{1}{\Lambda}$ in our application

Proof outline: local functional inequalities via transport flow

- 1 Note that $\mathbb{E}\left[\mathsf{F}^2 \mid X_\mathsf{e}\right]$ is a function of X_e
- $\text{ By log-Sobolev ineq. of } \mu_e \qquad \qquad \text{by Diaconis and Saloff-Coste'96} \\ \text{ Ent } \left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq O\left(\log\frac{1}{\varphi}\right) \text{Var } \left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right]$
- $$\begin{split} \text{Note that } \Omega(\mu_e) = & \{0,1\} \\ \text{Var} \left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]} \right] = \mu_e(1)\mu_e(0) \left(\sqrt{\mathbb{E}\left[F^2 \mid X_e = 0\right]} \sqrt{\mathbb{E}\left[F^2 \mid X_e = 1\right]} \right)^2 \\ = & \mu_e(1)\mu_e(0) \left(\sqrt{\frac{\mathbb{E}\left[f^2(s(\gamma))\right]}{\gamma_{\gamma}\Gamma_e}} \left[f^2(t(\gamma))\right]} \right)^2 \end{split}$$
- Note that $(x,y) \mapsto (\sqrt{x} \sqrt{y})^2$ is convex on \mathbb{R}^2 , by Jensen's ineq. on \mathbb{R}^2 $\text{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[f(s(\gamma)) f(t(\gamma))\right]^2$ $= \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\sum_{(x \in \mathcal{Y}) \in \mathcal{Y}} (f(x) f(y))\right]^2$

Proof outline: local functional inequalities via transport flow

- 1 Note that $\mathbb{E}\left[\mathsf{F}^2 \mid X_\mathsf{e}\right]$ is a function of X_e
- $\begin{array}{ccc} \textbf{2} & \text{By log-Sobolev ineq. of } \mu_e & \text{by Diaconis and Saloff-Coste'96} \\ & & \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq O\left(\log\frac{1}{\Phi}\right) \text{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right] \end{array}$
- Note that $\Omega(\mu_e) = \{0, 1\}$ $\operatorname{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right] = \mu_e(1)\mu_e(0)\left(\sqrt{\mathbb{E}\left[F^2 \mid X_e = 0\right]} \sqrt{\mathbb{E}\left[F^2 \mid X_e = 1\right]}\right)^2$ $= \mu_e(1)\mu_e(0)\left(\sqrt{\frac{\mathbb{E}\left[f^2(s(\gamma))\right]}{\gamma \sim \Gamma_e}\left[f^2(s(\gamma))\right]} \sqrt{\frac{\mathbb{E}\left[f^2(t(\gamma))\right]}{\gamma \sim \Gamma_e}\left[f^2(t(\gamma))\right]}\right)^2$

$$\begin{array}{l} \text{ Note that } (x,y) \mapsto (\sqrt{x} - \sqrt{y})^2 \text{ is convex on } \mathbb{R}^2 \text{, by Jensen's ineq. on } \mathbb{R}^2 \\ \text{ Var} \left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]} \right] \leq \mu_e(1) \mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[f(s(\gamma)) - f(t(\gamma)) \right]^2 \\ \\ = \mu_e(1) \mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[\sum_{(x \mapsto u) \in \gamma} (f(x) - f(y)) \right]^2 \\ \end{array}$$

- 1 Note that $\mathbb{E}\left[\mathsf{F}^2 \mid X_{\mathsf{e}}\right]$ is a function of X_{e}
- $\text{ By log-Sobolev ineq. of } \mu_e \qquad \qquad \text{by Diaconis and Saloff-Coste'96} \\ \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq O\left(\log\frac{1}{\varphi}\right) \text{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right]$
- Note that $\Omega(\mu_e) = \{0, 1\}$ $\text{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right] = \mu_e(1)\mu_e(0)\left(\sqrt{\mathbb{E}\left[F^2 \mid X_e = 0\right]} \sqrt{\mathbb{E}\left[F^2 \mid X_e = 1\right]}\right)^2$ $= \mu_e(1)\mu_e(0)\left(\sqrt{\frac{\mathbb{E}\left[f^2(s(\gamma))\right]}{\gamma^{\sim}\Gamma_e}\left[f^2(t(\gamma))\right]}\right)^2$

$$\begin{split} \text{ Note that } (x,y) \mapsto (\sqrt{x} - \sqrt{y})^2 \text{ is convex on } \mathbb{R}^2 \text{, by Jensen's ineq. on } \mathbb{R} \\ \text{Var} \left[\sqrt{\mathbb{E} \left[F^2 \mid X_e \right]} \right] & \leq \mu_e(1) \mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[f(s(\gamma)) - f(t(\gamma)) \right]^2 \\ & = \mu_e(1) \mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[\sum_{(x \mapsto u) \in \gamma} (f(x) - f(y)) \right]^2 \end{split}$$

- 1 Note that $\mathbb{E}[F^2 \mid X_e]$ is a function of X_e
- $\begin{array}{ccc} \textbf{2} & \text{By log-Sobolev ineq. of } \mu_e & \text{by Diaconis and Saloff-Coste'96} \\ & & \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq O\left(\log\frac{1}{\Phi}\right) \text{Var}\left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]}\right] \end{array}$
- $\begin{aligned} \text{So Note that } \Omega(\mu_e) &= \{0,1\} \\ \text{Var} \left[\sqrt{\mathbb{E}\left[F^2 \mid X_e\right]} \right] &= \mu_e(1) \mu_e(0) \left(\sqrt{\mathbb{E}\left[F^2 \mid X_e = 0\right]} \sqrt{\mathbb{E}\left[F^2 \mid X_e = 1\right]} \right)^2 \end{aligned}$

$$= \mu_e(1)\mu_e(0) \left(\sqrt{\underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[f^2(s(\gamma)) \right]} - \sqrt{\underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[f^2(t(\gamma)) \right]} \right)^2$$

 $\text{A Note that } (x,y) \mapsto (\sqrt{x} - \sqrt{y})^2 \text{ is convex on } \mathbb{R}^2, \text{ by Jensen's ineq. on } \mathbb{R}^2$ $\text{Var} \left[\sqrt{\mathbb{E} \left[F^2 \mid X_e\right]} \right] \leq \mu_e(1) \mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[f(s(\gamma)) - f(t(\gamma)) \right]^2$

$$= \mu_e(1) \mu_e(0) \mathop{\mathbb{E}}_{\gamma \sim \Gamma_e} \left[\sum_{(x \mapsto y) \in \gamma} (f(x) - f(y)) \right]^2$$

1 - 4 together:

$$\Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\sum_{(x \mapsto y) \in \gamma} (f(x) - f(y))\right]^2$$

5 By Cauchy-Schwarz inequality

$$\begin{split} \Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) &\text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\ell(\gamma) \cdot \sum_{(x \mapsto y) \in \gamma} (f(x) - f(y))^2\right] \\ &= \mu_e(1)\mu_e(0) \sum_{(x \mapsto y)} \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\ell(\gamma) \cdot \mathbf{1}[(x \mapsto y) \in \gamma]\right] (f(x) - f(y))^2 \end{split}$$

Take summation over e and compare with the Dirichlet form term by term

$$E_{Q}(f, f) = \frac{1}{2} \sum_{(x \mapsto y)} \mu(x) Q(x, y) (f(x) - f(y))$$

1 - 4 together:

$$\Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\sum_{(x \mapsto y) \in \gamma} (f(x) - f(y))\right]^2$$

5 By Cauchy-Schwarz inequality

$$\begin{split} \Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) &\text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \mathop{\mathbb{E}}_{\gamma \sim \Gamma_e} \left[\ell(\gamma) \cdot \sum_{(x \mapsto y) \in \gamma} (f(x) - f(y))^2\right] \\ &= \mu_e(1)\mu_e(0) \mathop{\sum}_{(x \mapsto y)} \mathop{\mathbb{E}}_{\gamma \sim \Gamma_e} \left[\ell(\gamma) \cdot \mathbf{1}[(x \mapsto y) \in \gamma]\right] (f(x) - f(y))^2 \end{split}$$

Take summation over e and compare with the Dirichlet form term by term

$$\mathcal{E}_{Q}(f, f) = \frac{1}{2} \sum_{(x \mapsto y)} \mu(x) Q(x, y) (f(x) - f(y))$$

1 - 4 together:

$$\Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) \text{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma \sim \Gamma_e}{\mathbb{E}}\left[\sum_{(x \mapsto y) \in \gamma} (f(x) - f(y))\right]^2$$

6 By Cauchy-Schwarz inequality

$$\begin{split} \Omega\left(\frac{1}{\log\frac{1}{\varphi}}\right) &\text{Ent}\left[\mathbb{E}\left[F^2\mid X_e\right]\right] \leq \mu_e(1)\mu_e(0) \underset{\gamma\sim\Gamma_e}{\mathbb{E}}\left[\ell(\gamma)\cdot \sum_{(x\mapsto y)\in\gamma} (f(x)-f(y))^2\right] \\ &= \mu_e(1)\mu_e(0) \sum_{(x\mapsto y)} \underset{\gamma\sim\Gamma_e}{\mathbb{E}}\left[\ell(\gamma)\cdot \textbf{1}[(x\mapsto y)\in\gamma]\right] (f(x)-f(y))^2 \end{split}$$

6 Take summation over e and compare with the Dirichlet form term by term

$$\mathcal{E}_{Q}(f, f) = \frac{1}{2} \sum_{(x \mapsto y)} \mu(x) Q(x, y) (f(x) - f(y))^{2}$$

Local functional inequalities via transport flow

If there is a family of transport flows

$$\left\{\Gamma_{e} \text{ from } \mu^{e \leftarrow 0} \text{ to } \mu^{e \leftarrow 1} \mid e \in E\right\},$$

s.t. the κ -(strong) expected congestion bound is satisfied: \forall transition $(x \mapsto y)$ of Q,

$$\sum_{e \in F} \mu_e(0) \mu_e(1) \mathop{\mathbb{E}}_{\gamma \sim \Gamma_e} \left[\ell(\gamma) \cdot \mathbf{1}[(x \mapsto y) \in \gamma] \right] \leq \kappa \cdot \mu(x) Q(x,y),$$

then the α -local log-Sobolev inequality is satisfied

$$\forall f : \Omega \to \mathbb{R}_{\geq 0}, \quad \frac{\alpha}{m} \sum_{e \in E} \mathsf{Ent}\left[\mathbb{E}\left[F^2 \mid X_e\right]\right] \leq \epsilon_Q(f,f), \quad \mathsf{with} \quad \alpha = \Omega\left(\frac{m}{\kappa \log \frac{1}{\varphi}}\right),$$

where $\phi \leq \min\{\mu_e(c) \mid e \in E, c \in \{0, 1\}\}\$ is the marginal lower bound.

Theorem

There is a family of transport flows such that $\kappa = O(\Delta^2 \mathfrak{m})$ for P_{JS}

Construction of the transport flow Γ_{P} : local-flip coupling

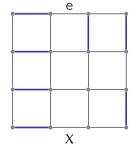
Local-flip coupling

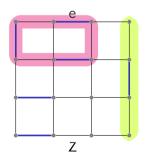
Let X, Y be two random matchings generated as follow:

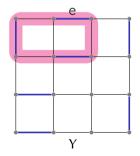
- ▶ sample $X \sim \mu^{e \leftarrow 0}$ and $Z \sim \mu^{e \leftarrow 1}$ independently the difference between X and Z are paths and cycles
- let D be the unique path/cucle that contains e
- ightharpoonup let $Y = Z_D \cup X_{F \setminus D}$

Fact

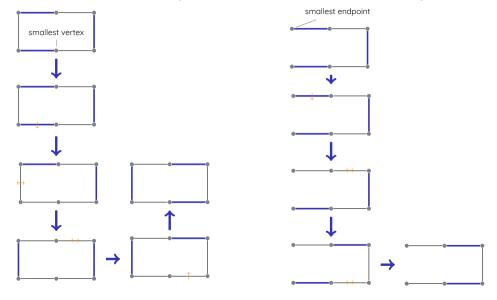
- $X \sim \mu^{e \leftarrow 0}$ $Y \sim \mu^{e \leftarrow 1}$







Construction of the transport flow Γ_e : JS's canonical path



Construction of the transport flow $\Gamma_{\!e}$

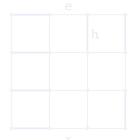
Construction of $\{\Gamma_e \mid e \in E\}$

- let $X \sim \mu^{e \leftarrow 0}$ and $Y \sim \mu^{e \leftarrow 1}$ be sampled from the local-flip coupling
- let γ be the canonical path from X to Y, then Law $(\gamma) = \Gamma_e$

Goal: \forall transition ($\alpha \mapsto \beta$) of P_{JS} ,

$$\sum_{e \in E} \mu_e(0) \mu_e(1) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[\ell(\gamma) \cdot \mathbf{1} [(\alpha \mapsto \beta) \in \gamma] \right] \le O(\Delta^2 \mathfrak{m}) \cdot \mu(\alpha) P_{JS}(\alpha, \beta) \tag{\bigstar}$$

Issue: it is hard to analysis multiple couplings togethe





ocal-flip coupling is highly symmetric

Claim

$$\mu_e(0)\mu_e(1) \Pr_{(X,Y) \sim \Gamma_e} [X = x, Y = y]$$

$$=\mu_h(0)\mu_h(1)\Pr_{(X,Y)\sim\Gamma_h}[X=x,Y=y]$$

21/26

Construction of the transport flow Γ_{e}

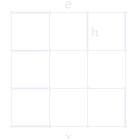
Construction of $\{\Gamma_e \mid e \in E\}$

- let $X \sim \mu^{e \leftarrow 0}$ and $Y \sim \mu^{e \leftarrow 1}$ be sampled from the local-flip coupling
- let γ be the canonical path from X to Y, then Law $(\gamma) = \Gamma_e$

Goal: \forall transition $(\alpha \mapsto \beta)$ of P_{JS} ,

$$\sum_{\gamma \in \Gamma} \mu_e(0) \mu_e(1) \underset{\gamma \sim \Gamma_e}{\mathbb{E}} \left[\ell(\gamma) \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma] \right] \leq O(\Delta^2 m) \cdot \mu(\alpha) P_{JS}(\alpha, \beta) \tag{\bigstar}$$

Issue: it is hard to analysis multiple couplings together



local-flip coupling is highly symmetric

$\mu_{e}(0)\mu_{e}(1)\Pr_{(X,Y)\sim\Gamma_{e}}[X=x,Y=y]$

$$=\!\!\mu_h(0)\mu_h(1)\Pr_{(X,Y)\sim\Gamma_h}[X=x,Y=y]$$

Construction of the transport flow $\Gamma_{\rm e}$

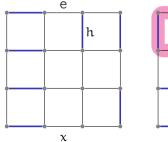
Construction of $\{\Gamma_e \mid e \in E\}$

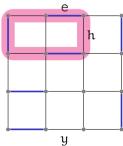
- let $X \sim \mu^{e \leftarrow 0}$ and $Y \sim \mu^{e \leftarrow 1}$ be sampled from the local-flip coupling
- let γ be the canonical path from X to Y, then Law $(\gamma) = \Gamma_e$

Goal: \forall transition ($\alpha \mapsto \beta$) of P_{JS} ,

$$\sum_{\boldsymbol{\gamma} \sim \Gamma_{e}} \mu_{e}(0) \mu_{e}(1) \underset{\boldsymbol{\gamma} \sim \Gamma_{e}}{\mathbb{E}} \left[\ell(\boldsymbol{\gamma}) \cdot \boldsymbol{1} [(\boldsymbol{\alpha} \mapsto \boldsymbol{\beta}) \in \boldsymbol{\gamma}] \right] \leq O(\Delta^{2} \mathfrak{m}) \cdot \mu(\boldsymbol{\alpha}) P_{\mathsf{JS}}(\boldsymbol{\alpha}, \boldsymbol{\beta}) \tag{\bigstar}$$

Issue: it is hard to analysis multiple couplings together





local-flip coupling is highly symmetric

Claim $\mu_e(0)\mu_e(1)\Pr_{(X,Y)\sim\Gamma_e}[X=x,Y=y]$

 $=\mu_h(0)\mu_h(1)\Pr_{(X,Y)\sim\Gamma_h}[X=x,Y=y]$

Construction of the transport flow $\Gamma_{\!e}$

Construction of $\{\Gamma_e \mid e \in E\}$

- let $X \sim \mu^{e \leftarrow 0}$ and $Y \sim \mu^{e \leftarrow 1}$ be sampled from the local-flip coupling
- let γ be the canonical path from X to Y, then Law $(\gamma) = \Gamma_e$

Goal: \forall transition $(\alpha \mapsto \beta)$ of P_{JS} ,

$$\sum_{e \in F} \mu_e(0) \mu_e(1) \mathop{\mathbb{E}}_{\gamma \sim \Gamma_e} \left[\ell(\gamma) \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma] \right] \leq O(\Delta^2 \mathfrak{m}) \cdot \mu(\alpha) P_{JS}(\alpha, \beta) \tag{\bigstar}$$

Issue: it is hard to analysis multiple couplings together

Decoupling lemma

 \forall transition $(\alpha \mapsto \beta)$, if $h \in E$ s.t. $\alpha_h \neq \beta_h$, then (\uparrow) holds if

$$\mu_{h}(0)\mu_{h}(1) \underset{\Gamma_{h}}{\mathbb{E}} \left[|X \oplus Y|^{2} \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma] \right] \leq O(\Delta^{2}\mathfrak{m}) \cdot \mu(\alpha)P_{JS}(\alpha,\beta)$$
$$= O(\Delta^{2}) \cdot \min\{\mu(\alpha), \mu(\beta)\}$$

Goal

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]\leq O(\Delta^2)\cdot \min\{\mu(\alpha),\mu(\beta)\}$$

Observation: If $\alpha_h = 0$ and $\beta_h = 1$, then $(\alpha \mapsto \beta) \in \gamma \iff Y = \beta$

$$\begin{split} \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \cdot \mathbf{1}[Y = \beta] \right] &= \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \mid Y = \beta \right] \underset{\Gamma_h}{\textbf{Pr}} [Y = \beta] \\ &= \mu_h(0)\mu(\beta) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \mid Y = \beta \right] \end{split}$$

Lemma

$$\forall h \in E, \forall p \ge 0, \quad \mathbb{E}_{\Gamma} [|X \oplus Y|^p \mid Y = \beta] = O_p(\Delta^p)$$

Proved by a standard percolation analysis w.r.t. local-flip coupling

This implies

$$\Rightarrow \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}\left[|X\oplus Y|^2\cdot \mathbf{1}[Y=\beta]\right] = \mu_h(0)\mu(\beta)O(\Delta^2) \leq O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

The $\alpha_{\rm h}=1$, $\beta_{\rm h}=0$ case is summetric

Goal

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]\leq O(\Delta^2)\cdot \min\{\mu(\alpha),\mu(\beta)\}$$

Observation: If
$$\alpha_h=0$$
 and $\beta_h=1$, then $(\alpha\mapsto\beta)\in\gamma\Longleftrightarrow Y=\beta$

$$\begin{split} \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[Y=\beta]\right] &= \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\mid Y=\beta\right] \mathop{\textbf{Pr}}_{\Gamma_h}[Y=\beta] \\ &= \mu_h(0)\mu(\beta)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\mid Y=\beta\right] \end{split}$$

Lemma

$$\forall h \in E, \forall p \geq 0, \quad \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^p \mid Y = \beta \right] = O_p(\Delta^p)$$

Proved by a standard percolation analysis w.r.t. local-flip coupling

This implies

$$\Rightarrow \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[Y=\beta]\right] = \mu_h(0)\mu(\beta)O(\Delta^2) \leq O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

The $\alpha_h = 1$, $\beta_h = 0$ case is summetric

Goal

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]\leq O(\Delta^2)\cdot \text{min}\{\mu(\alpha),\mu(\beta)\}$$

Observation: If $\alpha_h=0$ and $\beta_h=1,$ then $(\alpha\mapsto\beta)\in\gamma\Longleftrightarrow Y=\beta$

$$\begin{split} \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[\left|X\oplus Y\right|^2\cdot \mathbf{1}[Y=\beta]\right] &= \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[\left|X\oplus Y\right|^2\mid Y=\beta\right] \mathop{\textbf{Pr}}_{\Gamma_h}[Y=\beta] \\ &= \mu_h(0)\mu(\beta)\mathop{\mathbb{E}}_{\Gamma_h}\left[\left|X\oplus Y\right|^2\mid Y=\beta\right] \end{split}$$

Lemma

$$\forall h \in E, \forall p \geq 0, \quad \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^p \mid Y = \beta \right] = O_p(\Delta^p)$$

Proved by a standard percolation analysis w.r.t. local-flip coupling

This implies

$$\Rightarrow \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[Y=\beta]\right] = \mu_h(0)\mu(\beta)O(\Delta^2) \leq O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

The $\alpha_h = 1$, $\beta_h = 0$ case is summetric

$$\{\downarrow,\uparrow\}$$
-transitions

Goal

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]\leq O(\Delta^2)\cdot \min\{\mu(\alpha),\mu(\beta)\}$$

Observation: If $\alpha_h = 0$ and $\beta_h = 1$, then $(\alpha \mapsto \beta) \in \gamma \iff Y = \beta$

$$\begin{split} \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \cdot \mathbf{1}[Y = \beta] \right] &= \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \mid Y = \beta \right] \underset{\Gamma_h}{\textbf{Pr}} \left[Y = \beta \right] \\ &= \mu_h(0)\mu(\beta) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \mid Y = \beta \right] \end{split}$$

Lemma

$$\forall h \in E, \forall p \geq 0, \quad \underset{\Gamma_{h}}{\mathbb{E}} \left[|X \oplus Y|^{p} \mid Y = \beta \right] = O_{p}(\Delta^{p})$$

Proved by a standard percolation analysis w.r.t. local-flip coupling

This implies

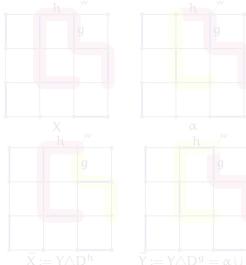
$$\Rightarrow \mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma}\left[|X\oplus Y|^2\cdot \mathbf{1}[Y=\beta]\right] = \mu_h(0)\mu(\beta)O(\Delta^2) \leq O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

The $\alpha_h = 1$, $\beta_h = 0$ case is symmetric

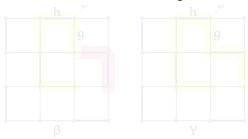
 \leftrightarrow -transitions

(also works for cycles after some adjustment)

Q: how to understand $(\alpha \mapsto \beta) \in \gamma$?



Jerrum-Sinclair'89 hints a change of variable



This means we can rewrite the expectation

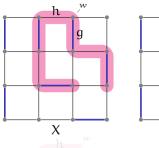
$$\mathbb{E}_{\Gamma_{h}} \left[|X \oplus Y|^{2} \cdot 1[(\alpha \mapsto \beta) \in \gamma] \right]$$

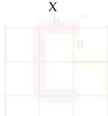
$$= \mathbb{E}_{\Gamma_{h}} \left[\left| \widetilde{X} \oplus \widetilde{Y} \right|^{2} \cdot 1[\widetilde{Y} = \alpha \cup \beta] \right]$$

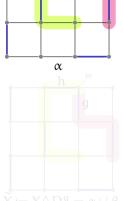
Q: how to understand the law of X and Y?

(also works for cycles after some adjustment)

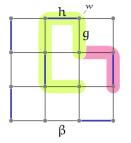
Q: how to understand $(\alpha \mapsto \beta) \in \gamma$?

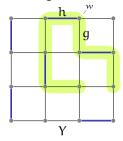






Jerrum-Sinclair'89 hints a change of variable





This means we can rewrite the expectation

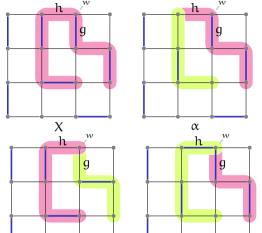
$$\mathbb{E}_{\Gamma_{b}}\left[|X \oplus Y|^{2} \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma]\right]$$

$$= \underset{\Gamma_h}{\mathbb{E}} \left[\left| \widetilde{X} \oplus \widetilde{Y} \right|^2 \cdot 1 \left[\widetilde{Y} = \alpha \cup \beta \right] \right]$$

Q: how to understand the law of X and Y?

(also works for cycles after some adjustment)

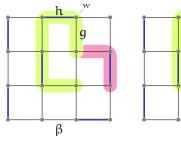
Q: how to understand $(\alpha \mapsto \beta) \in \gamma$?

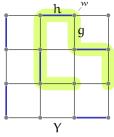


 $Y := Y \triangle D^g = \alpha \cup \beta$

 $\widetilde{X} := Y \wedge D^h$

Jerrum-Sinclair'89 hints a change of variable





This means we can rewrite the expectation

$$\mathbb{E}_{\Gamma_{h}} \left[|X \oplus Y|^{2} \cdot 1[(\alpha \mapsto \beta) \in \gamma \right]$$

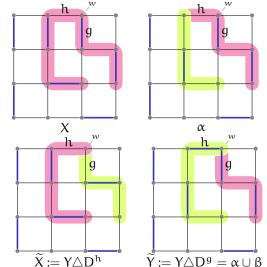
$$= \mathbb{E}_{\Gamma_{h}} \left[|\widetilde{X} \oplus \widetilde{Y}|^{2} \cdot 1[\widetilde{Y} = \alpha \cup \beta] \right]$$

Q: how to understand the law of X and Y?

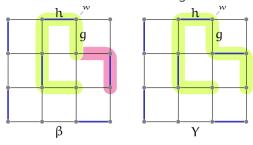
 \leftrightarrow -transitions

(also works for cycles after some adjustment)

Q: how to understand $(\alpha \mapsto \beta) \in \gamma$?



Jerrum-Sinclair'89 hints a change of variable



This means we can rewrite the expectation

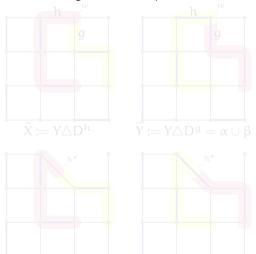
$$\mathbb{E}_{\Gamma_{h}}\left[\left|X \oplus Y\right|^{2} \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma]\right]$$

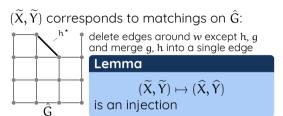
$$= \mathbb{E}_{\Gamma_{h}}\left[\left|\widetilde{X} \oplus \widetilde{Y}\right|^{2} \cdot \mathbf{1}[\widetilde{Y} = \alpha \cup \beta]\right]$$

Q: how to understand the law of \widetilde{X} and \widetilde{Y} ?

(also works for cycles after some adjustment)

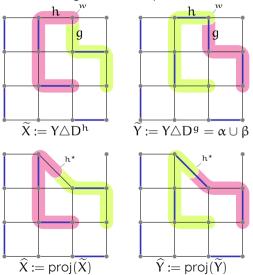
The following is new compare to Jerrum-Sinclair's analysis

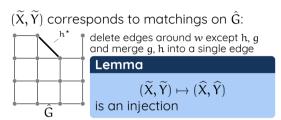




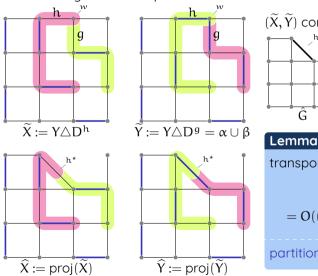
(also works for cycles after some adjustment)

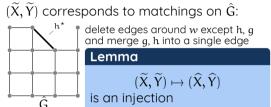
The following is new compare to Jerrum-Sinclair's analysis

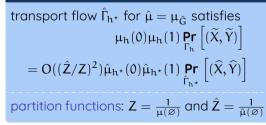




The following is new compare to Jerrum-Sinclair's analysis







This means we have

$$\begin{split} & \mu_h(0)\mu_h(1) \mathop{\mathbb{E}}_{\Gamma_h} \left[|X \oplus Y|^2 \cdot \boldsymbol{1} [(\alpha \mapsto \beta) \in \gamma] \right] \\ = & \mu_h(0)\mu_h(1) \mathop{\mathbb{E}}_{\Gamma_h} \left[\left| \widetilde{X} \oplus \widetilde{Y} \right|^2 \cdot \boldsymbol{1} [\widetilde{Y} = \alpha \cup \beta] \right] \\ = & O((\hat{Z}/Z)^2) \cdot \hat{\mu}_{h^\star}(0) \hat{\mu}_{h^\star}(1) \mathop{\mathbb{E}}_{\hat{\Gamma}_{h^\star}} \left[\left| \widehat{X} \oplus \widehat{Y} \right|^2 \cdot \boldsymbol{1} [\widehat{Y} = \text{proj}(\alpha \cup \beta)] \right] \end{split}$$

Similar to the case $lpha\opluseta=\{\mathtt{h}\}$, we have

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right] = O((\hat{Z}/Z)^2)\cdot \hat{\mu}_{h^*}(0)\hat{\mu}(\text{proj}(\alpha\cup\beta))\Delta^2$$

Note that
$$\hat{Z} = \sum_{M \in \hat{G}} \lambda^{|M|} \leq \sum_{M \in G} \lambda^{|M|} = Z$$
, and

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[\left|X\oplus Y\right|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right] = O(\Delta^2)\frac{\lambda^{|proj(\alpha\cup\beta)|}}{Z} = O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

This means we have

$$\begin{split} & \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[|X \oplus Y|^2 \cdot \textbf{1}[(\alpha \mapsto \beta) \in \gamma] \right] \\ = & \mu_h(0)\mu_h(1) \underset{\Gamma_h}{\mathbb{E}} \left[\left| \widetilde{X} \oplus \widetilde{Y} \right|^2 \cdot \textbf{1}[\widetilde{Y} = \alpha \cup \beta] \right] \\ = & O((\hat{Z}/Z)^2) \cdot \hat{\mu}_{h^\star}(0)\hat{\mu}_{h^\star}(1) \underset{\hat{\Gamma}_{h^\star}}{\mathbb{E}} \left[\left| \widehat{X} \oplus \widehat{Y} \right|^2 \cdot \textbf{1}[\widehat{Y} = \text{proj}(\alpha \cup \beta)] \right] \end{split}$$

Similar to the case $\alpha \oplus \beta = \{h\}$, we have

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right] = O((\hat{Z}/Z)^2)\cdot \hat{\mu}_{h^\star}(0)\hat{\mu}(\text{proj}(\alpha\cup\beta))\Delta^2$$

Note that
$$\hat{Z} = \sum_{M \in \hat{G}} \lambda^{|M|} \le \sum_{M \in G} \lambda^{|M|} = Z$$
, and

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]=O(\Delta^2)\frac{\lambda^{|\text{proj}}(\alpha\cup\beta)|}{Z}=O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

This means we have

$$\begin{split} & \mu_h(0)\mu_h(1) \mathop{\mathbb{E}}_{\Gamma_h} \left[|X \oplus Y|^2 \cdot \mathbf{1}[(\alpha \mapsto \beta) \in \gamma] \right] \\ = & \mu_h(0)\mu_h(1) \mathop{\mathbb{E}}_{\Gamma_h} \left[\left| \widetilde{X} \oplus \widetilde{Y} \right|^2 \cdot \mathbf{1}[\widetilde{Y} = \alpha \cup \beta] \right] \\ = & O((\hat{Z}/Z)^2) \cdot \hat{\mu}_{h^*}(0)\hat{\mu}_{h^*}(1) \mathop{\mathbb{E}}_{\hat{\Gamma}_{h^*}} \left[\left| \widehat{X} \oplus \widehat{Y} \right|^2 \cdot \mathbf{1}[\widehat{Y} = \text{proj}(\alpha \cup \beta)] \right] \end{split}$$

Similar to the case $\alpha \oplus \beta = \{h\}$, we have

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[|X\oplus Y|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right] = O((\hat{Z}/Z)^2)\cdot \hat{\mu}_{h^\star}(0)\hat{\mu}(\text{proj}(\alpha\cup\beta))\Delta^2$$

Note that $\hat{Z} = \sum_{M \in \hat{G}} \lambda^{|M|} \leq \sum_{M \in G} \lambda^{|M|} = Z$, and

$$\mu_h(0)\mu_h(1)\mathop{\mathbb{E}}_{\Gamma_h}\left[\left|X\oplus Y\right|^2\cdot \mathbf{1}[(\alpha\mapsto\beta)\in\gamma]\right]=O(\Delta^2)\frac{\lambda^{|\text{proj}(\alpha\cup\beta)|}}{Z}=O(\Delta^2)\min\{\mu(\alpha),\mu(\beta)\}$$

Thank you arXiv:2504.02740

Conclusion

Better bounds for Poincaré inequality and log-Sobolev inequality follows from

- low (one-sided) discrepancy coupling of $\mu^{e \leftarrow a}$ and $\mu^{e \leftarrow b}$, i.e. small $\mathbb{E}\left[|X \oplus Y|^p \mid Y = y\right]$ for some $p \geq 0$
- good construction of canonial paths

Future directions:

- Find more applications: e.g. permanent, Ising model, switch/flip chain for sampling regular graphs (note that it is acceptable that descrepancy = n^c for some $c \in (0,1)$)
- The relationship between local functional inequalities with SI and EI?
- Exact mixing time bound for matchings: $\widetilde{O}(\Delta^c \mathfrak{m}), c = ?$ possible candidates: $c \in \{0, 0.5, 1, 2\}$